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  new directions



Bootstrapping

Some people say:

a compiler is not “real” until it is self-hosting

meaning:  it can compile itself

“bootstrap”



Bootstrapping

Some people say:
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This lecture:

1.  how the CakeML compiler was bootstrapped

2.  where CakeML is going next (version 3)
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If we input factorial …

… then the toolchain produces 
machine code and proves

a theorem stating that the code 
behaves like the factorial function.
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compiler backend

AST

machine code

synthesise AST

function in the logic

input:  verified compiler function i.e. composition of parser, 
type inferencer and compiler backend

output:  verified implementation of 
compiler function

= verified function in logic

= proof-producing tool



compiler backend

AST

machine code

synthesise AST

function in the logic

= verified function in logic

= proof-producing tool

The Missing Piece



AST

synthesise AST

function in the logic

“The CakeML Translator”

Performs a bottom-up translation of HOL functions into AST.

Proves:  the generated AST behaves like the HOL function

expressed as a typed logical relation



Definitions
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Proof-producing translation of higher-order logic into ML 11

invariants. The most basic refinement invariants relate HOL representations of boolean and
integers to the same concepts in the CakeML semantics. We define refinement invariants
bool and int as follows.

bool true = lv. (v = Lit true)

bool false = lv. (v = Lit false)

int i = lv. (v = Lit i) where i is an integer

We make statements in terms of Eval and refinement invariants. For example, Eval and
int can be used to state that the constant CakeML expression 5 always evaluates to an
CakeML value that is related to integer 5 in HOL. Throughout, we write SML syntax
enclosed within b·c as an abbreviation for the often verbose AST for CakeML.

Eval env b5c (int 5)

Similarly, the Eval predicate can also be used to make statements about variables. Using
Eval, we can, for example, state that CakeML expression n, i.e. CakeML variable n, eval-
uates to a value that corresponds to HOL integer n:

Eval env bnc (int n)

4.2 Bottom-up translation of terms

Given a HOL term to translate, e.g. n+5, the goal of our proof-producing translation is to
construct an CakeML expression, in this case bn+5c, and prove a theorem that relates the
HOL term with the evaluation of the CakeML expression. The resulting theorem is stated
in terms of Eval. For n+ 5, this resulting theorem is to state that n+ 5 is Eval-related to
bn+5c, if n is related to HOL variable n.

Eval env bnc (int n) =)
Eval env bn+5c (int (n+5))

For a given HOL term t and generated CakeML expression exp, the shape of the resulting
theorem is always the following, for some appropriate refinement invariant inv:

assumptions =) Eval env exp (inv t) (4)

Translation of HOL terms is performed as a bottom-up traversal based on the syntax of
the given HOL term. Each recursive call in this traversal returns a theorem of shape (4).
For term n+5, the leaves of this bottom-up traversal, i.e. n and 5, prove theorems:

Eval env bnc (int n) =) Eval env bnc (int n) (5)

true =) Eval env b5c (int 5) (6)

Compound expressions are combined using lemmas that aid translation. For the running
example, the HOL operation for integer addition is translated using the following lemma
relating integer addition in HOL (+) with integer addition in CakeML (+):

8e1 e2 i j.
Eval env be1c (int i) ^
Eval env be2c (int j) =)
Eval env be1 + e2c (int (i+ j))

We can express relationships between HOL and CakeML:
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if we define int as follows: CakeML AST

HOL integer 

relates HOL i with CakeML value v, if v is an integer

The translator states its theorems using a relation called Eval.
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v := Lit l literal constant
| Con C [v1, . . . ,vn] constructor
| Closure env x e closure
| Recclosure env [(x1,y1,e1), . . . ,(xn,yn,en)]] x recursive function closure
| Loc loc a reference to the store

r := hs,Rval vi
| hs,Rerr exi

where env ranges over finite maps from x to v
loc ranges over store locations, and
s ranges over finite maps from loc to v.

Fig. 2. Semantic auxiliaries for CakeML

including datatype, inside of let, and it enforces the OCaml-style restriction that
constructors begin upper-case and other names begin lower case.

5. CakeML’s native integers are arbitrary precision. This is most convenient for trans-
lation from HOL’s logic which uses natural numbers; however, there is precedent
in practical implementation: the Poly/ML compiler implements arbitrary precision
integers natively; other ML implementations usually support them as a library. This
decision requires that the part B compiler come equipped with a verified bignum
library to implement arbitrary precision arithmetic (Myreen & Curello, 2013).

4 Synthesis of pure ML

The following sections explain our approach to proof-producing synthesis of CakeML from
functions in higher-order logic (HOL). This section explains our approach for producing
pure ML functions. Section 5 describes an extension which can produce stateful ML.

4.1 Core definitions and concepts

Each run of the translation algorithm produces a proof w.r.t. the CakeML operational
semantics (Section 3). The entire translation approach is developed to produce such proofs,
and thus centred around the operational semantics. The synthesis algorithm does not make
direct statements about the operational semantics; instead a predicate called Eval is used to
express properties of the operational semantics.

We define Eval env exp post to be true if CakeML expression exp evaluates, in environ-
ment env, to some value val such that post is true for val, i.e. post val. The fact that it returns
a value — as opposed to an error — tells us that evaluation terminates and that no error
happened during evaluation, e.g., evaluation did not hit any missing cases while pattern
matching. Below, + is the evaluation relation from the big-step semantics for CakeML,
emp is the empty state, and post has type v ! bool. Here Eval requires that the expression
is pure: given an empty state, evaluation must return an empty state.

Eval env exp post =
9val. evaluate env exp e = (Rval val,e) ^ post val

The interesting part is how post gets instantiated and used. We instantiate post with
predicates that relate terms in HOL with CakeML values from the semantics of CakeML,



Bottom-up construction

Each stage derives a theorem of the form:
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Examples:
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Bottom-up construction

Lemmas are used to translate compound terms:
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The lemma above is used to combine (5) and (6), to prove the desired theorem:

Eval env bnc (int n) =) Eval env bn+5c (int (n+5)) (7)

The same lemma can, of course, be used to translate any combination of integer HOL
variables, integer constants and integer addition, e.g.

Eval env bnc (int n) =) Eval env bn+n+5+5c (int (n+n+5+5))

All term translation — as opposed to translation of recursive functions (Section 4.3) —
is performed in exactly this bottom-up manner. The following subsections detail how
features such as type variables and l -abstractions fit into this approach to term translation.
Support for ML-like features such as pattern-matching and partial specifications is covered
in Section 4.4.

4.2.1 Functions as first-class values

Both HOL and CakeML support the use of functions as first-class values. In order to allow
for function values in the translation, we need a refinement invariant that relates function
values in HOL with function values in CakeML, i.e. closures. For this purpose, we have a
refinement combinator !. Given refinement invariants, a and b, this refinement combinator
a ! b is a refinement invariant between function values in HOL and CakeML. We define
(a ! b) f cl to be true if cl is a closure such that, whenever the closure is applied to a value
v satisfying refinement invariant input a, it returns a value u satisfying output invariant b;
and furthermore, its input-output relation coincides with f w.r.t. a and b.

This combinator’s formal definition is based on an evaluation relation for application
of closures, evaluate closure (which is defined in terms of +, and applies to non-recursive
and recursive closures). Read evaluate closure v cl u as saying: application of closure cl to
argument v returns value u. We define a ! b to be true for function f and closure cl if and
only if, for every input x and CakeML value v such that a x v, the closure cl applied to v
evaluates to some value u such that refinement invariant b relates f applied to x with u.

(a ! b) f = lcl. 8x v. a x v =)9u. evaluate closure v cl u^b ( f x) u

Here the type of f is a ! b , and cl, v and u are CakeML values, i.e. have type v.
This refinement combinator allows us to make statements about function values. For

example, the following states that f evaluates to a closure which corresponds to a HOL
function f which maps integers to integers.

Eval env bfc ((int! int) f )

To aid translation we have a few lemmas for reasoning about function values: one for
function application, and a few for translation of l -abstractions. The lemma which enables
translation of function application is the following.

Eval env bfc ((a ! b) f ) ^
Eval env bxc (a x) =)
Eval env bf xc (b ( f x))

Example:

Examples:
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Functions

A function f from int to int: 
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example, the following states that f evaluates to a closure which corresponds to a HOL
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this arrow combines relations

The arrow is defined as follows:
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for any inputs x and v, related by a …

… when closure cl is applied to v …

… some u is returned such that b relates it with the result of f x… some u is returned such that b relates it with the result of f x



Function Application
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translation of function application is the following.

Eval env bfc ((a ! b) f ) ^
Eval env bxc (a x) =)
Eval env bf xc (b ( f x))

With this lemma, it is easy to translate f 5 into CakeML using the bottom-up traversal
technique outlined above. The result of such a translation is a theorem:

Eval env bfc ((int! int) f ) =) Eval env bf 5c (int ( f 5))

The simplest lemma for translation of l -abstractions is the following. This lemma re-
quires that the abstract and concrete values, x and v can be universally quantified. Here n
is a name and n 7! v extends the environment env with binding: name n maps to value v.4

(8x v. a x v =) Eval (env[n 7! v]) bbodyc (b ( f x))) =)
Eval env bfn n => bodyc ((a ! b) f )

As an example, this lemma allows for translation of terms such as ln. n+ 5. The proof
essentially matches (7) with the left-hand side of the lemma above in order to reach:

Eval env bfn n => n+5c ((int! int) (ln. n+5))

The lemma above is sometimes not directly applicable. The reason is that the universal
quantifier on x on the left-hand side of the lemma above is too restrictive. Consider, for
example, translation of the term ln. 5 div n. Translation of the body produces a theorem
where n has a side condition other than just a binding to name n.

n 6= 0 ^ Eval env bnc (int n) =) Eval env b5 div nc (int (5 div n))

In such cases, a less restrictive form of the lemma from above is used. The less restrictive
lemma is the same except that the abstract variable is not universally quantified. The price
one must pay is the introduction of an eq combinator that restricts the input to be exactly
value x. Here and throughout eq a x y v = (x = y)^a y v.

(8v. a x v =) Eval (env[n 7! v]) bbodyc (b ( f x))) =)
Eval env bfn n => bodyc ((eq a x ! b) f )

With this lemma, the translation of ln. 5 div n yields:

8n. n 6= 0 =) Eval env bfn n => 5 div nc ((eq int n ! int) (ln. 5 div n))

A different but somewhat similar looking lemma is used for translation of HOL’s let-
expressions. Below, let is HOL’s internal combinator which represents let-expressions. In

4 The CakeML semantics represents names in a very direct manner: the names appear as strings
in the deep embedding. Variable expressions are evaluated as look-ups in a environment that
the semantics carries around. Note that our tool never needs to perform substitution or a-
conversion on CakeML expressions (for HOL terms this is supported natively in the logic). The
tool just constructs CakeML expressions bottom-up. It can therefore avoid the many technical
difficulties (Aydemir et al., 2005) associated with substitution and variable renaming in deeply
embedded syntax.
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translation of function application is the following.

Eval env bfc ((a ! b) f ) ^
Eval env bxc (a x) =)
Eval env bf xc (b ( f x))

With this lemma, it is easy to translate f 5 into CakeML using the bottom-up traversal
technique outlined above. The result of such a translation is a theorem:

Eval env bfc ((int! int) f ) =) Eval env bf 5c (int ( f 5))

The simplest lemma for translation of l -abstractions is the following. This lemma re-
quires that the abstract and concrete values, x and v can be universally quantified. Here n
is a name and n 7! v extends the environment env with binding: name n maps to value v.4

(8x v. a x v =) Eval (env[n 7! v]) bbodyc (b ( f x))) =)
Eval env bfn n => bodyc ((a ! b) f )

As an example, this lemma allows for translation of terms such as ln. n+ 5. The proof
essentially matches (7) with the left-hand side of the lemma above in order to reach:

Eval env bfn n => n+5c ((int! int) (ln. n+5))

The lemma above is sometimes not directly applicable. The reason is that the universal
quantifier on x on the left-hand side of the lemma above is too restrictive. Consider, for
example, translation of the term ln. 5 div n. Translation of the body produces a theorem
where n has a side condition other than just a binding to name n.

n 6= 0 ^ Eval env bnc (int n) =) Eval env b5 div nc (int (5 div n))

In such cases, a less restrictive form of the lemma from above is used. The less restrictive
lemma is the same except that the abstract variable is not universally quantified. The price
one must pay is the introduction of an eq combinator that restricts the input to be exactly
value x. Here and throughout eq a x y v = (x = y)^a y v.

(8v. a x v =) Eval (env[n 7! v]) bbodyc (b ( f x))) =)
Eval env bfn n => bodyc ((eq a x ! b) f )

With this lemma, the translation of ln. 5 div n yields:

8n. n 6= 0 =) Eval env bfn n => 5 div nc ((eq int n ! int) (ln. 5 div n))

A different but somewhat similar looking lemma is used for translation of HOL’s let-
expressions. Below, let is HOL’s internal combinator which represents let-expressions. In

4 The CakeML semantics represents names in a very direct manner: the names appear as strings
in the deep embedding. Variable expressions are evaluated as look-ups in a environment that
the semantics carries around. Note that our tool never needs to perform substitution or a-
conversion on CakeML expressions (for HOL terms this is supported natively in the logic). The
tool just constructs CakeML expressions bottom-up. It can therefore avoid the many technical
difficulties (Aydemir et al., 2005) associated with substitution and variable renaming in deeply
embedded syntax.

We can now derive:

assumption about variable f conclusion about f 5
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translation of function application is the following.

Eval env bfc ((a ! b) f ) ^
Eval env bxc (a x) =)
Eval env bf xc (b ( f x))

With this lemma, it is easy to translate f 5 into CakeML using the bottom-up traversal
technique outlined above. The result of such a translation is a theorem:

Eval env bfc ((int! int) f ) =) Eval env bf 5c (int ( f 5))

The simplest lemma for translation of l -abstractions is the following. This lemma re-
quires that the abstract and concrete values, x and v can be universally quantified. Here n
is a name and n 7! v extends the environment env with binding: name n maps to value v.4

(8x v. a x v =) Eval (env[n 7! v]) bbodyc (b ( f x))) =)
Eval env bfn n => bodyc ((a ! b) f )

As an example, this lemma allows for translation of terms such as ln. n+ 5. The proof
essentially matches (7) with the left-hand side of the lemma above in order to reach:

Eval env bfn n => n+5c ((int! int) (ln. n+5))

The lemma above is sometimes not directly applicable. The reason is that the universal
quantifier on x on the left-hand side of the lemma above is too restrictive. Consider, for
example, translation of the term ln. 5 div n. Translation of the body produces a theorem
where n has a side condition other than just a binding to name n.

n 6= 0 ^ Eval env bnc (int n) =) Eval env b5 div nc (int (5 div n))

In such cases, a less restrictive form of the lemma from above is used. The less restrictive
lemma is the same except that the abstract variable is not universally quantified. The price
one must pay is the introduction of an eq combinator that restricts the input to be exactly
value x. Here and throughout eq a x y v = (x = y)^a y v.

(8v. a x v =) Eval (env[n 7! v]) bbodyc (b ( f x))) =)
Eval env bfn n => bodyc ((eq a x ! b) f )

With this lemma, the translation of ln. 5 div n yields:

8n. n 6= 0 =) Eval env bfn n => 5 div nc ((eq int n ! int) (ln. 5 div n))

A different but somewhat similar looking lemma is used for translation of HOL’s let-
expressions. Below, let is HOL’s internal combinator which represents let-expressions. In

4 The CakeML semantics represents names in a very direct manner: the names appear as strings
in the deep embedding. Variable expressions are evaluated as look-ups in a environment that
the semantics carries around. Note that our tool never needs to perform substitution or a-
conversion on CakeML expressions (for HOL terms this is supported natively in the logic). The
tool just constructs CakeML expressions bottom-up. It can therefore avoid the many technical
difficulties (Aydemir et al., 2005) associated with substitution and variable renaming in deeply
embedded syntax.
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translation of function application is the following.

Eval env bfc ((a ! b) f ) ^
Eval env bxc (a x) =)
Eval env bf xc (b ( f x))

With this lemma, it is easy to translate f 5 into CakeML using the bottom-up traversal
technique outlined above. The result of such a translation is a theorem:

Eval env bfc ((int! int) f ) =) Eval env bf 5c (int ( f 5))

The simplest lemma for translation of l -abstractions is the following. This lemma re-
quires that the abstract and concrete values, x and v can be universally quantified. Here n
is a name and n 7! v extends the environment env with binding: name n maps to value v.4

(8x v. a x v =) Eval (env[n 7! v]) bbodyc (b ( f x))) =)
Eval env bfn n => bodyc ((a ! b) f )

As an example, this lemma allows for translation of terms such as ln. n+ 5. The proof
essentially matches (7) with the left-hand side of the lemma above in order to reach:

Eval env bfn n => n+5c ((int! int) (ln. n+5))

The lemma above is sometimes not directly applicable. The reason is that the universal
quantifier on x on the left-hand side of the lemma above is too restrictive. Consider, for
example, translation of the term ln. 5 div n. Translation of the body produces a theorem
where n has a side condition other than just a binding to name n.

n 6= 0 ^ Eval env bnc (int n) =) Eval env b5 div nc (int (5 div n))

In such cases, a less restrictive form of the lemma from above is used. The less restrictive
lemma is the same except that the abstract variable is not universally quantified. The price
one must pay is the introduction of an eq combinator that restricts the input to be exactly
value x. Here and throughout eq a x y v = (x = y)^a y v.

(8v. a x v =) Eval (env[n 7! v]) bbodyc (b ( f x))) =)
Eval env bfn n => bodyc ((eq a x ! b) f )

With this lemma, the translation of ln. 5 div n yields:

8n. n 6= 0 =) Eval env bfn n => 5 div nc ((eq int n ! int) (ln. 5 div n))

A different but somewhat similar looking lemma is used for translation of HOL’s let-
expressions. Below, let is HOL’s internal combinator which represents let-expressions. In

4 The CakeML semantics represents names in a very direct manner: the names appear as strings
in the deep embedding. Variable expressions are evaluated as look-ups in a environment that
the semantics carries around. Note that our tool never needs to perform substitution or a-
conversion on CakeML expressions (for HOL terms this is supported natively in the logic). The
tool just constructs CakeML expressions bottom-up. It can therefore avoid the many technical
difficulties (Aydemir et al., 2005) associated with substitution and variable renaming in deeply
embedded syntax.

Example:

instantiates the env

smaller env

derived from theorem with assumption about n
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HOL, let abbreviates l f x. f x and the HOL printer knows to treat let as special, e.g.
let (la. a+1) x is printed on the screen as let a = x in a+1.

Eval env bxc (a x) ^
(8v. a x v =) Eval (env[n 7! v]) bbodyc (b ( f x))) =)
Eval env blet val n = x in body endc (b (let f x))

Lemmas for translation of recursive functions are described in Section 4.3.

4.2.2 Type variables

The examples above used int as a fixed type/invariant. So how do we translate something
that has HOL type a , i.e. a variable type? Answer: for this we use a regular HOL variable
for the invariant, e.g. we can use variable a with HOL type a ! v ! bool as the invariant.
The HOL type of the int refinement invariant is int ! v ! bool, i.e. all that we did was
abstract the constant int to a variable a and, similarly in its type, we abstracted the type int
to a .

With this variable a ranging over all possible refinement invariants, we can state that
CakeML variable x evaluates to HOL variable x of type a as follows.

Eval env bxc (a x)

Similarly, we can use the invariant combinator from above to specify that the CakeML
value is a closure such that HOL function f of type a ! a is an accurate representation.

Eval env bfc ((a ! a) f )

With this approach to translation of terms with free type variables, we can apply the
lemmas mentioned above at a more abstract level. For example, we can derive CakeML
code corresponding to a HOL function l f x. f ( f x) which contains a type variable a .

8a. Eval env bfn f => fn x => f (f x)c
(((a ! a)! a ! a) (l f x. f ( f x)))

(8)

4.3 Translation of (recursive) functions

The previous section presented how terms can be translated with certificate proofs from
HOL to CakeML. The following subsections explain how we apply this term translation to
translate top-level function definitions, and, in particular, recursive functions.

4.3.1 Translation of non-recursive functions

When a term is translated into CakeML, as above, the result is a CakeML expression. How-
ever, at the top-level, a CakeML program consists of a list of declarations. We therefore
want top-level HOL terms to be translated into CakeML declararions, not expressions.

Before turning our attention to recursive functions, we first continue the example from
Section 4.2.2 on translation of a non-recursive function. We show how CakeML terms are
packaged up into lists of declarations.

has type αvariable with type α → v → bool

Crucially: a can be instantiated once a more concrete type is used

e.g. with the int relation which has type variable with type int → v → bool
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The example from Section 4.2.2, translated l f x. f ( f x) into a CakeML expression.
The certificate theorem produced is the following.

Eval env bfn f => fn x => f (f x)c
(((a ! a)! a ! a) (l f x. f ( f x)))

If twice is a HOL constant defined to be l f x. f ( f x), then this can be rephrased:

Eval env bfn f => fn x => f (f x)c
(((a ! a)! a ! a) twice)

To introduce a declaration giving a similar name to the generated CakeML expression, one
applies a lemma, explained below, which introduces a declaration assumption DeclAssum

(see Section 4.3.1). The result is a theorem which states: if the environment env is the result
of evaluating the top-level declarations in the DeclAssum, then evaluation of the CakeML
name twice corresponds to the behaviour of HOL function twice.

DeclAssum bval twice = fn f => fn x => f (f x);c env =)
Eval env btwicec (((a ! a)! a ! a) twice)

The goal of a complete translation effort is to produce a CakeML program, i.e. a list of
CakeML declararions.

The following lemma is used to introduce CakeML declarations for terms and non-
recursive functions. This lemma appends a new declaration to the end of a DeclAssum

list of declarations. In cases, where there is no previous declarartion assumption, one can
simply add a new assumption DeclAssum with an empty declaration list.

(8env. DeclAssum bdecsc env =) Eval env bexpc post) =)
(8env. DeclAssum bdecs val n = exp;c env =) Eval env bnc post)

A full translation consists of translating HOL function- and constant-definitions one at a
time. Each translation appends the new declaration to the list of generated declarations.

4.3.2 Algorithm for translation of (recursive) functions

The previous section provided an example which explained how a function constant from
HOL can be translated into a CakeML declaration. In this section, we summarise the high-
level steps that are involved in each function translation in general, whether non-recursive
or not. For clarity, this description assumes the function is not mutually recursive. The
algorithm is, however, easily modified to also apply to mutually recursive functions. Our
implementation supports mutual recursion.

Information retrieval. Given a function f to translate, the initial phase collects the neces-
sary information about this function, e.g. is it a constant definition, is it recursive? If it
is recursive then the induction theorem associated with its definition is fetched from the
theory context. The recursive case will be explained in the next section.

Preprocessing. The next step prepares the definition for translation: the definition is col-
lapsed to a single top-level clause, as mentioned in Section 4.4.1, and certain implicit
pattern matching is rewritten into explicit pattern matching, e.g. l (x,y). body is ex-
panded into lx. case x of (x,y) ) body. For the rest of this section, assume that the
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HOL, let abbreviates l f x. f x and the HOL printer knows to treat let as special, e.g.
let (la. a+1) x is printed on the screen as let a = x in a+1.

Eval env bxc (a x) ^
(8v. a x v =) Eval (env[n 7! v]) bbodyc (b ( f x))) =)
Eval env blet val n = x in body endc (b (let f x))

Lemmas for translation of recursive functions are described in Section 4.3.

4.2.2 Type variables

The examples above used int as a fixed type/invariant. So how do we translate something
that has HOL type a , i.e. a variable type? Answer: for this we use a regular HOL variable
for the invariant, e.g. we can use variable a with HOL type a ! v ! bool as the invariant.
The HOL type of the int refinement invariant is int ! v ! bool, i.e. all that we did was
abstract the constant int to a variable a and, similarly in its type, we abstracted the type int
to a .

With this variable a ranging over all possible refinement invariants, we can state that
CakeML variable x evaluates to HOL variable x of type a as follows.

Eval env bxc (a x)

Similarly, we can use the invariant combinator from above to specify that the CakeML
value is a closure such that HOL function f of type a ! a is an accurate representation.

Eval env bfc ((a ! a) f )

With this approach to translation of terms with free type variables, we can apply the
lemmas mentioned above at a more abstract level. For example, we can derive CakeML
code corresponding to a HOL function l f x. f ( f x) which contains a type variable a .

8a. Eval env bfn f => fn x => f (f x)c
(((a ! a)! a ! a) (l f x. f ( f x)))

(8)

4.3 Translation of (recursive) functions

The previous section presented how terms can be translated with certificate proofs from
HOL to CakeML. The following subsections explain how we apply this term translation to
translate top-level function definitions, and, in particular, recursive functions.

4.3.1 Translation of non-recursive functions

When a term is translated into CakeML, as above, the result is a CakeML expression. How-
ever, at the top-level, a CakeML program consists of a list of declarations. We therefore
want top-level HOL terms to be translated into CakeML declararions, not expressions.

Before turning our attention to recursive functions, we first continue the example from
Section 4.2.2 on translation of a non-recursive function. We show how CakeML terms are
packaged up into lists of declarations.

One derives:
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The example from Section 4.2.2, translated l f x. f ( f x) into a CakeML expression.
The certificate theorem produced is the following.

Eval env bfn f => fn x => f (f x)c
(((a ! a)! a ! a) (l f x. f ( f x)))

If twice is a HOL constant defined to be l f x. f ( f x), then this can be rephrased:

Eval env bfn f => fn x => f (f x)c
(((a ! a)! a ! a) twice)

To introduce a declaration giving a similar name to the generated CakeML expression, one
applies a lemma, explained below, which introduces a declaration assumption DeclAssum

(see Section 4.3.1). The result is a theorem which states: if the environment env is the result
of evaluating the top-level declarations in the DeclAssum, then evaluation of the CakeML
name twice corresponds to the behaviour of HOL function twice.

DeclAssum bval twice = fn f => fn x => f (f x);c env =)
Eval env btwicec (((a ! a)! a ! a) twice)

The goal of a complete translation effort is to produce a CakeML program, i.e. a list of
CakeML declararions.

The following lemma is used to introduce CakeML declarations for terms and non-
recursive functions. This lemma appends a new declaration to the end of a DeclAssum

list of declarations. In cases, where there is no previous declarartion assumption, one can
simply add a new assumption DeclAssum with an empty declaration list.

(8env. DeclAssum bdecsc env =) Eval env bexpc post) =)
(8env. DeclAssum bdecs val n = exp;c env =) Eval env bnc post)

A full translation consists of translating HOL function- and constant-definitions one at a
time. Each translation appends the new declaration to the list of generated declarations.

4.3.2 Algorithm for translation of (recursive) functions

The previous section provided an example which explained how a function constant from
HOL can be translated into a CakeML declaration. In this section, we summarise the high-
level steps that are involved in each function translation in general, whether non-recursive
or not. For clarity, this description assumes the function is not mutually recursive. The
algorithm is, however, easily modified to also apply to mutually recursive functions. Our
implementation supports mutual recursion.

Information retrieval. Given a function f to translate, the initial phase collects the neces-
sary information about this function, e.g. is it a constant definition, is it recursive? If it
is recursive then the induction theorem associated with its definition is fetched from the
theory context. The recursive case will be explained in the next section.

Preprocessing. The next step prepares the definition for translation: the definition is col-
lapsed to a single top-level clause, as mentioned in Section 4.4.1, and certain implicit
pattern matching is rewritten into explicit pattern matching, e.g. l (x,y). body is ex-
panded into lx. case x of (x,y) ) body. For the rest of this section, assume that the

… and then the following: assumes twice is bound in ML envassumes twice is bound in ML env

CakeML name twice is related to HOL name twiceCakeML name twice is related to HOL const twice



Algorithm

Function translation is easy in non-recursive case:
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The example from Section 4.2.2, translated l f x. f ( f x) into a CakeML expression.
The certificate theorem produced is the following.

Eval env bfn f => fn x => f (f x)c
(((a ! a)! a ! a) (l f x. f ( f x)))

If twice is a HOL constant defined to be l f x. f ( f x), then this can be rephrased:

Eval env bfn f => fn x => f (f x)c
(((a ! a)! a ! a) twice)

To introduce a declaration giving a similar name to the generated CakeML expression, one
applies a lemma, explained below, which introduces a declaration assumption DeclAssum

(see Section 4.3.1). The result is a theorem which states: if the environment env is the result
of evaluating the top-level declarations in the DeclAssum, then evaluation of the CakeML
name twice corresponds to the behaviour of HOL function twice.

DeclAssum bval twice = fn f => fn x => f (f x);c env =)
Eval env btwicec (((a ! a)! a ! a) twice)

The goal of a complete translation effort is to produce a CakeML program, i.e. a list of
CakeML declararions.

The following lemma is used to introduce CakeML declarations for terms and non-
recursive functions. This lemma appends a new declaration to the end of a DeclAssum

list of declarations. In cases, where there is no previous declarartion assumption, one can
simply add a new assumption DeclAssum with an empty declaration list.

(8env. DeclAssum bdecsc env =) Eval env bexpc post) =)
(8env. DeclAssum bdecs val n = exp;c env =) Eval env bnc post)

A full translation consists of translating HOL function- and constant-definitions one at a
time. Each translation appends the new declaration to the list of generated declarations.

4.3.2 Algorithm for translation of (recursive) functions

The previous section provided an example which explained how a function constant from
HOL can be translated into a CakeML declaration. In this section, we summarise the high-
level steps that are involved in each function translation in general, whether non-recursive
or not. For clarity, this description assumes the function is not mutually recursive. The
algorithm is, however, easily modified to also apply to mutually recursive functions. Our
implementation supports mutual recursion.

Information retrieval. Given a function f to translate, the initial phase collects the neces-
sary information about this function, e.g. is it a constant definition, is it recursive? If it
is recursive then the induction theorem associated with its definition is fetched from the
theory context. The recursive case will be explained in the next section.

Preprocessing. The next step prepares the definition for translation: the definition is col-
lapsed to a single top-level clause, as mentioned in Section 4.4.1, and certain implicit
pattern matching is rewritten into explicit pattern matching, e.g. l (x,y). body is ex-
panded into lx. case x of (x,y) ) body. For the rest of this section, assume that the

assumes twice is bound in ML envassumes twice is bound in ML env

CakeML name twice is related to HOL name twiceCakeML name twice is related to HOL name twice

Step 1:  bottom-up traversal following body of HOL 
            definition

Step 2:  replace body with HOL name (rewriting) and
            “store” CakeML code in env
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definition is now of the form:

f x1 x2 . . . xn = rhs

Bottom-up traversal. The next phase takes the right-hand side of the definition to be
translated and constructs an Eval-theorem, as demonstrated in Section 4.2. This theorem
is derived through a bottom-up traversal of the HOL term. At each stage, a proof rule or
lemma is applied to introduce the corresponding CakeML syntax into the Eval-theorem.
The result of this traversal is a theorem where the right-hand side of the HOL function
appears together with its derived CakeML counterpart.

assumptions =) Eval env derived code (inv rhs)

The next phases attempt to discharge the assumptions. Trivial assumptions can be dis-
charged as part of the bottom-up traversal.

Packaging. The next phase reduces the term rhs to the function constant f. To do this, lem-
mas are applied that introduce a l -abstraction for each formal parameter, and then the
following simplification on the right-hand side is performed: the definition is collapsed
and eta conversion is performed.

lx1 x2 . . . xn. rhs
= lx1 x2 . . . xn. f x1 x2 . . . xn

= f

Introduction of l -abstractions on the right-hand side of the HOL expression introduces
closures on the CakeML side. For recursive functions, the final closure lemma is a
special rule for introducing a fun-declaration for recursive functions.

Induction. For recursive functions, the induction theorem associated with the function
definition is used to discharge the assumptions that were made at the recursive call
sites. The assumptions that the induction theorem fails to discharge are collected and
defined to be a side-condition. Such side conditions usually arise from partiality in
pattern matching, which will be presented in Section 4.4.2.

Future use. Once the translation is complete, the certificate theorem is stored into the
translator’s memory. Future translations can then use this certificate theorem in their
Bottom-up traversal phase, when function constant f is encountered. The resulting
certificate theorem is always of the form, for some inv and some possible precondition:

8env. DeclAssum bdeclarationsc env ^ precondition =) Eval env bfc (inv f)

4.3.3 Translation of recursive functions

CakeML code for non-recursive functions can be derived as shown above. Recursive HOL
functions require some additional effort. To illustrate why, consider the following definition
of the gcd function.

gcd m n = if 0 < n then gcd n (m mod n) else m

If we were to do the bottom-up traversal step for the right-hand side of the definition
of gcd in exactly the same way it is done for non-recursive functions, then we would get

a translation must make an 
assumption about the 

CakeML-HOL relation for gcd

… but that’s what we are proving!



A restrictive assumption:

Solution
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stuck. The method described in bottom-up derivation described in Section 4.2 would not
have an Eval-theorem describing the recursive call. At the stage where it gets stuck, one
would like to have a theorem of the form:

. . .=) Eval env bgcdc ((int! int! int) gcd)

In other words, we would like to assume what we set out to prove.
Our solution is to make a more precise assumption: we formulate the assumption in such

a way that it records for what values it was applied; we then discharge these assumptions
using an induction which will be explained later.

We use the combinator eq, mentioned earlier in Section 4.2.1, to ‘record’ what values
we have assumed that the recursive call is applied to.

eq a x = ly v. (x = y)^a y v

When this eq-combinator is used together with ! it restricts the universal quantifier that is
hidden inside the ! function combinator. One can informally read, the refinement invariant
int! . . . as saying “for any int input, . . . ”. Similarly, eq int i ! . . . can be read as “for any
int input equal to i, . . . ”, which is the same as “for int input i, . . . ”.

We state the assumption at call sites using the eq combinator, for some m and n:

Eval env bgcdc ((eq int m ! eq int n ! int) gcd) (9)

For the rest of this example we abbreviate (9) as P m n. In order to derive an Eval theorem
for the expression gcd n (m mod n), we first derive an Eval theorem for argument n,

Eval env bnc (int n) =)
Eval env bnc (int n)

and an Eval theorem for argument m mod n,

Eval env bmc (int m) ^
Eval env bnc (int n) ^ n 6= 0 =)
Eval env bm mod nc (int (m mod n))

Next, we use the following rule to introduce eq combinators to the above theorems

8a x m. Eval env m (a x) =) Eval env m ((eq a x) x)

and then we apply to application lemma for ! from Section 4.2.1 to get an Eval theorem
for gcd n (m mod n):

Eval env bmc (int m) ^ P n (m mod n) ^
Eval env bnc (int n) ^ n 6= 0 =)
Eval env bgcd n (m mod n)c (int (gcd n (m mod n)))

By then continuing the bottom-up traversal as usual and packaging up the right-hand side
into a declaration, we arrive at the following theorem where our abbreviation P appears
both as an assumption and as the conclusion.

DedclAssum bfun gcd m = fn n => ...c env =)
8m n. (0 < n =) P n (m mod n)) =) P m n

(10)

where

restricts the forall inside the arrowrestricts the forall inside the arrow
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stuck. The method described in bottom-up derivation described in Section 4.2 would not
have an Eval-theorem describing the recursive call. At the stage where it gets stuck, one
would like to have a theorem of the form:

. . .=) Eval env bgcdc ((int! int! int) gcd)

In other words, we would like to assume what we set out to prove.
Our solution is to make a more precise assumption: we formulate the assumption in such

a way that it records for what values it was applied; we then discharge these assumptions
using an induction which will be explained later.

We use the combinator eq, mentioned earlier in Section 4.2.1, to ‘record’ what values
we have assumed that the recursive call is applied to.

eq a x = ly v. (x = y)^a y v

When this eq-combinator is used together with ! it restricts the universal quantifier that is
hidden inside the ! function combinator. One can informally read, the refinement invariant
int! . . . as saying “for any int input, . . . ”. Similarly, eq int i ! . . . can be read as “for any
int input equal to i, . . . ”, which is the same as “for int input i, . . . ”.

We state the assumption at call sites using the eq combinator, for some m and n:

Eval env bgcdc ((eq int m ! eq int n ! int) gcd) (9)

For the rest of this example we abbreviate (9) as A m n = . In order to derive an Eval

theorem for the expression gcd n (m mod n), we first derive an Eval theorem for argument
n,

Eval env bnc (int n) =)
Eval env bnc (int n)

and an Eval theorem for argument m mod n,

Eval env bmc (int m) ^
Eval env bnc (int n) ^ n 6= 0 =)
Eval env bm mod nc (int (m mod n))

Next, we use the following rule to introduce eq combinators to the above theorems

8a x m. Eval env m (a x) =) Eval env m ((eq a x) x)

and then we apply to application lemma for ! from Section 4.2.1 to get an Eval theorem
for gcd n (m mod n):

Eval env bmc (int m) ^ A n (m mod n) ^
Eval env bnc (int n) ^ n 6= 0 =)
Eval env bgcd n (m mod n)c (int (gcd n (m mod n)))

By then continuing the bottom-up traversal as usual and packaging up the right-hand side
into a declaration, we arrive at the following theorem where our abbreviation P appears
both as an assumption and as the conclusion.

DedclAssum bfun gcd m = fn n => ...c env =)
8m n. (0 < n =) A n (m mod n)) =) A m n

(10)

an abbreviation

Bottom-up translation of the rec. call produces:
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stuck. The method described in bottom-up derivation described in Section 4.2 would not
have an Eval-theorem describing the recursive call. At the stage where it gets stuck, one
would like to have a theorem of the form:

. . .=) Eval env bgcdc ((nat! nat! nat) gcd)

In other words, we would like to assume what we set out to prove.
Our solution is to make a more precise assumption: we formulate the assumption in such
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using an induction which will be explained later.

We use the combinator eq, mentioned earlier in Section 4.2.1, to ‘record’ what values
we have assumed that the recursive call is applied to.

eq a x = ly v. (x = y)^a y v

When this eq-combinator is used together with ! it restricts the universal quantifier that is
hidden inside the ! function combinator. One can informally read, the refinement invariant
nat! . . . as saying “for any nat input, . . . ”. Similarly, eq nat i ! . . . can be read as “for
any nat input equal to i, . . . ”, which is the same as “for nat input i, . . . ”.

We state the assumption at call sites using the eq combinator, for some m and n:

Eval env bgcdc ((eq nat m ! eq nat n ! nat) gcd) (9)

For the rest of this example we abbreviate (9) as A m n = . In order to derive an Eval

theorem for the expression gcd n (m mod n), we first derive an Eval theorem for argument
n,

Eval env bnc (nat n) =)
Eval env bnc (nat n)

and an Eval theorem for argument m mod n,

Eval env bmc (nat m) ^
Eval env bnc (nat n) ^ n 6= 0 =)
Eval env bm mod nc (nat (m mod n))

Next, we use the following rule to natroduce eq combinators to the above theorems

8a x m. Eval env m (a x) =) Eval env m ((eq a x) x)

and then we apply to application lemma for ! from Section 4.2.1 to get an Eval theorem
for gcd n (m mod n):

Eval env bmc (nat m) ^ A n (m mod n) ^
Eval env bnc (nat n) ^ n 6= 0 =)
Eval env bgcd n (m mod n)c (nat (gcd n (m mod n)))

By then continuing the bottom-up traversal as usual and packaging up the right-hand side
nato a declaration, we arrive at the following theorem where our abbreviation P appears
both as an assumption and as the conclusion.

DedclAssum bfun gcd m = fn n => ...c env =)
8m n. (0 < n =) A n (m mod n)) =) A m n

(10)
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stuck. The method described in bottom-up derivation described in Section 4.2 would not
have an Eval-theorem describing the recursive call. At the stage where it gets stuck, one
would like to have a theorem of the form:

. . .=) Eval env bgcdc ((int! int! int) gcd)

In other words, we would like to assume what we set out to prove.
Our solution is to make a more precise assumption: we formulate the assumption in such

a way that it records for what values it was applied; we then discharge these assumptions
using an induction which will be explained later.

We use the combinator eq, mentioned earlier in Section 4.2.1, to ‘record’ what values
we have assumed that the recursive call is applied to.

eq a x = ly v. (x = y)^a y v

When this eq-combinator is used together with ! it restricts the universal quantifier that is
hidden inside the ! function combinator. One can informally read, the refinement invariant
int! . . . as saying “for any int input, . . . ”. Similarly, eq int i ! . . . can be read as “for any
int input equal to i, . . . ”, which is the same as “for int input i, . . . ”.
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Eval env bgcdc ((eq int m ! eq int n ! int) gcd) (9)

For the rest of this example we abbreviate (9) as P m n. In order to derive an Eval theorem
for the expression gcd n (m mod n), we first derive an Eval theorem for argument n,

Eval env bnc (int n) =)
Eval env bnc (int n)

and an Eval theorem for argument m mod n,

Eval env bmc (int m) ^
Eval env bnc (int n) ^ n 6= 0 =)
Eval env bm mod nc (int (m mod n))

Next, we use the following rule to introduce eq combinators to the above theorems

8a x m. Eval env m (a x) =) Eval env m ((eq a x) x)

and then we apply to application lemma for ! from Section 4.2.1 to get an Eval theorem
for gcd n (m mod n):

Eval env bmc (int m) ^ P n (m mod n) ^
Eval env bnc (int n) ^ n 6= 0 =)
Eval env bgcd n (m mod n)c (int (gcd n (m mod n)))

By then continuing the bottom-up traversal as usual and packaging up the right-hand side
into a declaration, we arrive at the following theorem where our abbreviation P appears
both as an assumption and as the conclusion.

DedclAssum bfun gcd m = fn n => ...c env =)
8m n. (0 < n =) P n (m mod n)) =) P m n

(10)

where

restricts the forall inside the arrowrestricts the forall inside the arrow
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stuck. The method described in bottom-up derivation described in Section 4.2 would not
have an Eval-theorem describing the recursive call. At the stage where it gets stuck, one
would like to have a theorem of the form:

. . .=) Eval env bgcdc ((int! int! int) gcd)

In other words, we would like to assume what we set out to prove.
Our solution is to make a more precise assumption: we formulate the assumption in such

a way that it records for what values it was applied; we then discharge these assumptions
using an induction which will be explained later.

We use the combinator eq, mentioned earlier in Section 4.2.1, to ‘record’ what values
we have assumed that the recursive call is applied to.

eq a x = ly v. (x = y)^a y v

When this eq-combinator is used together with ! it restricts the universal quantifier that is
hidden inside the ! function combinator. One can informally read, the refinement invariant
int! . . . as saying “for any int input, . . . ”. Similarly, eq int i ! . . . can be read as “for any
int input equal to i, . . . ”, which is the same as “for int input i, . . . ”.

We state the assumption at call sites using the eq combinator, for some m and n:

Eval env bgcdc ((eq int m ! eq int n ! int) gcd) (9)

For the rest of this example we abbreviate (9) as A m n = . In order to derive an Eval

theorem for the expression gcd n (m mod n), we first derive an Eval theorem for argument
n,

Eval env bnc (int n) =)
Eval env bnc (int n)

and an Eval theorem for argument m mod n,

Eval env bmc (int m) ^
Eval env bnc (int n) ^ n 6= 0 =)
Eval env bm mod nc (int (m mod n))

Next, we use the following rule to introduce eq combinators to the above theorems

8a x m. Eval env m (a x) =) Eval env m ((eq a x) x)

and then we apply to application lemma for ! from Section 4.2.1 to get an Eval theorem
for gcd n (m mod n):

Eval env bmc (int m) ^ A n (m mod n) ^
Eval env bnc (int n) ^ n 6= 0 =)
Eval env bgcd n (m mod n)c (int (gcd n (m mod n)))

By then continuing the bottom-up traversal as usual and packaging up the right-hand side
into a declaration, we arrive at the following theorem where our abbreviation P appears
both as an assumption and as the conclusion.

DedclAssum bfun gcd m = fn n => ...c env =)
8m n. (0 < n =) A n (m mod n)) =) A m n

(10)

an abbreviation
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stuck. The method described in bottom-up derivation described in Section 4.2 would not
have an Eval-theorem describing the recursive call. At the stage where it gets stuck, one
would like to have a theorem of the form:

. . .=) Eval env bgcdc ((int! int! int) gcd)

In other words, we would like to assume what we set out to prove.
Our solution is to make a more precise assumption: we formulate the assumption in such

a way that it records for what values it was applied; we then discharge these assumptions
using an induction which will be explained later.

We use the combinator eq, mentioned earlier in Section 4.2.1, to ‘record’ what values
we have assumed that the recursive call is applied to.

eq a x = ly v. (x = y)^a y v

When this eq-combinator is used together with ! it restricts the universal quantifier that is
hidden inside the ! function combinator. One can informally read, the refinement invariant
int! . . . as saying “for any int input, . . . ”. Similarly, eq int i ! . . . can be read as “for any
int input equal to i, . . . ”, which is the same as “for int input i, . . . ”.

We state the assumption at call sites using the eq combinator, for some m and n:

Eval env bgcdc ((eq int m ! eq int n ! int) gcd) (9)

For the rest of this example we abbreviate (9) as A m n = . In order to derive an Eval

theorem for the expression gcd n (m mod n), we first derive an Eval theorem for argument
n,

Eval env bnc (int n) =)
Eval env bnc (int n)

and an Eval theorem for argument m mod n,

Eval env bmc (int m) ^
Eval env bnc (int n) ^ n 6= 0 =)
Eval env bm mod nc (int (m mod n))

Next, we use the following rule to introduce eq combinators to the above theorems

8a x m. Eval env m (a x) =) Eval env m ((eq a x) x)

and then we apply to application lemma for ! from Section 4.2.1 to get an Eval theorem
for gcd n (m mod n):

Eval env bmc (int m) ^ A n (m mod n) ^
Eval env bnc (int n) ^ n 6= 0 =)
Eval env bgcd n (m mod n)c (int (gcd n (m mod n)))

By then continuing the bottom-up traversal as usual and packaging up the right-hand side
into a declaration, we arrive at the following theorem where our abbreviation P appears
both as an assumption and as the conclusion.

DedclAssum bfun gcd m = fn n => ...c env =)
8m n. (0 < n =) A n (m mod n)) =) A m n

(10)

At the top-level:

This looks familiar…
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stuck. The method described in bottom-up derivation described in Section 4.2 would not
have an Eval-theorem describing the recursive call. At the stage where it gets stuck, one
would like to have a theorem of the form:

. . .=) Eval env bgcdc ((nat! nat! nat) gcd)

In other words, we would like to assume what we set out to prove.
Our solution is to make a more precise assumption: we formulate the assumption in such

a way that it records for what values it was applied; we then discharge these assumptions
using an induction which will be explained later.

We use the combinator eq, mentioned earlier in Section 4.2.1, to ‘record’ what values
we have assumed that the recursive call is applied to.

eq a x = ly v. (x = y)^a y v

When this eq-combinator is used together with ! it restricts the universal quantifier that is
hidden inside the ! function combinator. One can informally read, the refinement invariant
nat! . . . as saying “for any nat input, . . . ”. Similarly, eq nat i ! . . . can be read as “for
any nat input equal to i, . . . ”, which is the same as “for nat input i, . . . ”.

We state the assumption at call sites using the eq combinator, for some m and n:

Eval env bgcdc ((eq nat m ! eq nat n ! nat) gcd) (9)

For the rest of this example we abbreviate (9) as A m n = . In order to derive an Eval
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Eval env bnc (nat n) =)
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Eval env bmc (nat m) ^
Eval env bnc (nat n) ^ n 6= 0 =)
Eval env bm mod nc (nat (m mod n))

Next, we use the following rule to natroduce eq combinators to the above theorems

8a x m. Eval env m (a x) =) Eval env m ((eq a x) x)

and then we apply to application lemma for ! from Section 4.2.1 to get an Eval theorem
for gcd n (m mod n):

Eval env bmc (nat m) ^ A n (m mod n) ^
Eval env bnc (nat n) ^ n 6= 0 =)
Eval env bgcd n (m mod n)c (nat (gcd n (m mod n)))

By then continuing the bottom-up traversal as usual and packaging up the right-hand side
nato a declaration, we arrive at the following theorem where our abbreviation P appears
both as an assumption and as the conclusion.

DedclAssum bfun gcd m = fn n => ...c env =)
8m n. (0 < n =) A n (m mod n)) =) A m n

(10)
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have an Eval-theorem describing the recursive call. At the stage where it gets stuck, one
would like to have a theorem of the form:

. . .=) Eval env bgcdc ((int! int! int) gcd)

In other words, we would like to assume what we set out to prove.
Our solution is to make a more precise assumption: we formulate the assumption in such

a way that it records for what values it was applied; we then discharge these assumptions
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We use the combinator eq, mentioned earlier in Section 4.2.1, to ‘record’ what values
we have assumed that the recursive call is applied to.

eq a x = ly v. (x = y)^a y v

When this eq-combinator is used together with ! it restricts the universal quantifier that is
hidden inside the ! function combinator. One can informally read, the refinement invariant
int! . . . as saying “for any int input, . . . ”. Similarly, eq int i ! . . . can be read as “for any
int input equal to i, . . . ”, which is the same as “for int input i, . . . ”.

We state the assumption at call sites using the eq combinator, for some m and n:

Eval env bgcdc ((eq int m ! eq int n ! int) gcd) (9)

For the rest of this example we abbreviate (9) as A m n = . In order to derive an Eval

theorem for the expression gcd n (m mod n), we first derive an Eval theorem for argument
n,

Eval env bnc (int n) =)
Eval env bnc (int n)

and an Eval theorem for argument m mod n,

Eval env bmc (int m) ^
Eval env bnc (int n) ^ n 6= 0 =)
Eval env bm mod nc (int (m mod n))

Next, we use the following rule to introduce eq combinators to the above theorems

8a x m. Eval env m (a x) =) Eval env m ((eq a x) x)

and then we apply to application lemma for ! from Section 4.2.1 to get an Eval theorem
for gcd n (m mod n):

Eval env bmc (int m) ^ A n (m mod n) ^
Eval env bnc (int n) ^ n 6= 0 =)
Eval env bgcd n (m mod n)c (int (gcd n (m mod n)))

By then continuing the bottom-up traversal as usual and packaging up the right-hand side
into a declaration, we arrive at the following theorem where our abbreviation P appears
both as an assumption and as the conclusion.

DedclAssum bfun gcd m = fn n => ...c env =)
8m n. (0 < n =) A n (m mod n)) =) A m n

(10)

At the top-level:
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The shape of the right-hand side of the implication above matches the left-hand side of
the following induction theorem.

8P. (8m n. (0 < n =) P n (m mod n)) =) P m n) =) (8m n. P m n) (11)

Such induction theorems come out as a side product of the conventional definition mecha-
nisms that are built on top of HOL (Slind, 1999; Krauss, 2009). The most commonly used
definition mechanism uses (or guesses) a well-founded measure in order to prove totality
of recursive functions. Our translation algorithm relies on induction theorems that match
the shape of the function that is to be translated. If no such induction theorem exists, i.e.
the recursive function was not defined using the most common definition mechanism, then
custom induction theorems can be used instead. For the running of gcd, one might use a
custom induction theorem with an assumption gcd terminates for m n.

8P. (8m n. (0 < n =) P n (m mod n)) =) P m n) =)
(8m n. gcd terminates for m n =) P m n)

Note that this works for functions that do not ‘terminate’ for all input values.
By one application of modus ponens of (10) and (11), we arrive at a theorem with a

right-hand side: 8m n. P m n. By expanding the abbreviation P and some simplification
to remove, when possible, eq (as will be explained in the next section), we arrive at the
desired certificate theorem for the gcd function:

DedclAssum bfun gcd m = fn n => ...c env =)
Eval env bgcdc ((int! int! int) gcd)

The gcd function is a very simple function. However, the technique above is exactly
the same even for functions with nested recursion (e.g. as in McCarthy’s 91 function) and
mutual recursion (in such cases the induction has mulitple conculsions). We always use the
eq combinator to record input values, then apply the induction arising from the function’s
totality proof to discharge these assumptions and finally rewrite away the remaining eq

combinators as described next.

4.3.4 Simplification of eq

The example above glossed over how eq combinators are removed. In this section, we
expand on that detail. When translating recursive functions, we use the eq combinator to
‘record’ what values we instantiate the inductive hypothesis with. Once the induction has
been applied, we are left with an Eval-theorem which is cluttered with these eq combina-
tors. The theorems have this shape:

8x1 x2 . . . xn.

Eval env code
((eq a1 x1 ! eq a2 x2 ! . . .! eq an xn ! b) func)

Next, we show how these eq combinators can be removed by rewriting. First, we need
two new combinators. The examples below will illustrate their use.

A a y v = 8x. a x y v
E a y v = 9x. a x y v

The termination proof for gcd produces an induction 
theorem of the form:

The induction theorem is used to
remove these assumptions and finish

the translation.



Result

Final result:
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8P. (8m n. (0 < n =) P n (m mod n)) =) P m n) =) (8m n. P m n) (11)

Such induction theorems come out as a side product of the conventional definition mecha-
nisms that are built on top of HOL (Slind, 1999; Krauss, 2009). The most commonly used
definition mechanism uses (or guesses) a well-founded measure in order to prove totality
of recursive functions. Our translation algorithm relies on induction theorems that match
the shape of the function that is to be translated. If no such induction theorem exists, i.e.
the recursive function was not defined using the most common definition mechanism, then
custom induction theorems can be used instead. For the running of gcd, one might use a
custom induction theorem with an assumption gcd terminates for m n.

8P. (8m n. (0 < n =) P n (m mod n)) =) P m n) =)
(8m n. gcd terminates for m n =) P m n)

Note that this works for functions that do not ‘terminate’ for all input values.
By one application of modus ponens of (10) and (11), we arrive at a theorem with a

right-hand side: 8m n. P m n. By expanding the abbreviation P and some simplification
to remove, when possible, eq (as will be explained in the next section), we arrive at the
desired certificate theorem for the gcd function:

DedclAssum bfun gcd m = fn n => ...c env =)
Eval env bgcdc ((int! int! int) gcd)

The gcd function is a very simple function. However, the technique above is exactly
the same even for functions with nested recursion (e.g. as in McCarthy’s 91 function) and
mutual recursion (in such cases the induction has mulitple conculsions). We always use the
eq combinator to record input values, then apply the induction arising from the function’s
totality proof to discharge these assumptions and finally rewrite away the remaining eq

combinators as described next.

4.3.4 Simplification of eq

The example above glossed over how eq combinators are removed. In this section, we
expand on that detail. When translating recursive functions, we use the eq combinator to
‘record’ what values we instantiate the inductive hypothesis with. Once the induction has
been applied, we are left with an Eval-theorem which is cluttered with these eq combina-
tors. The theorems have this shape:

8x1 x2 . . . xn.

Eval env code
((eq a1 x1 ! eq a2 x2 ! . . .! eq an xn ! b) func)

Next, we show how these eq combinators can be removed by rewriting. First, we need
two new combinators. The examples below will illustrate their use.
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DedclAssum bfun gcd m = fn n => ...c env =)
Eval env bgcdc ((nat! nat! nat) gcd)

(11)

The shape of the right-hand side of the implication above matches the left-hand side of
the following induction theorem.

8P. (8m n. (0 < n =) P n (m mod n)) =) P m n) =) (8m n. P m n) (12)

Such induction theorems come out as a side product of the conventional definition mecha-
nisms that are built on top of HOL (Slind, 1999; Krauss, 2009). The most commonly used
definition mechanism uses (or guesses) a well-founded measure in order to prove totality
of recursive functions. Our translation algorithm relies on induction theorems that match
the shape of the function that is to be translated. If no such induction theorem exists, i.e.
the recursive function was not defined using the most common definition mechanism, then
custom induction theorems can be used instead. For the running of gcd, one might use a
custom induction theorem with an assumption gcd terminates for m n.

8P. (8m n. (0 < n =) P n (m mod n)) =) P m n) =)
(8m n. gcd terminates for m n =) P m n)

Note that this works for functions that do not ‘terminate’ for all input values.
By one application of modus ponens of (11) and (12), we arrive at a theorem with a

right-hand side: 8m n. P m n. By expanding the abbreviation P and some simplification
to remove, when possible, eq (as will be explained in the next section), we arrive at the
desired certificate theorem for the gcd function:

DedclAssum bfun gcd m = fn n => ...c env =)
Eval env bgcdc ((nat! nat! nat) gcd)

The gcd function is a very simple function. However, the technique above is exactly
the same even for functions with nested recursion (e.g. as in McCarthy’s 91 function) and
mutual recursion (in such cases the induction has mulitple conculsions). We always use the
eq combinator to record input values, then apply the induction arising from the function’s
totality proof to discharge these assumptions and finally rewrite away the remaining eq

combinators as described next.

4.3.4 Simplification of eq

The example above glossed over how eq combinators are removed. In this section, we
expand on that detail. When translating recursive functions, we use the eq combinator to
‘record’ what values we instantiate the inductive hypothesis with. Once the induction has
been applied, we are left with an Eval-theorem which is cluttered with these eq combina-
tors. The theorems have this shape:

8x1 x2 . . . xn.

Eval env code
((eq a1 x1 ! eq a2 x2 ! . . .! eq an xn ! b) func)

similar result to non-recursive case



Can all HOL functions be translated to ML?



Can all HOL functions be translated to ML?

No

HOL has more powerful semantics for = than ML

HOL allows underspecification (e.g. missing cases) and 
Hilbert’s choice.

HOL’s equality can compare functions, ML’s cannot

leads to side conditions in the translator theorems



brief HOL4 demo (if time allows)



Idea

input:  compiler function

output:  verified implementation of 
compiler function

compiler backend

machine code

synthesise AST

function in the logic

proves an Eval-theorem

evaluation inside the logic in 
order to produce a theorem



Idea

input:  compiler function

compiler backend

synthesise AST

function in the logic

TIME OUT (> 24 hours)

proves an Eval-theorem

evaluation inside the logic in 
order to produce a theorem

register allocator has bad complexity:
at least O(n3) where n is number of variables



Translation validation
in the context evaluation by rewriting in the logic

Register allocator is too slow for in-logic evaluation

Solution: 

1. evaluate compiler to just before register allocation

⊢ compile config [source_prog] = 
       imperative_to_target (reg_alloc config [graph] [IL-prog])

don’t expand definition

2. extract clash graph [graph]; find colouring outside of logic

3. instantiate config to include solution to colouring problem

4. make reg_alloc function checks if valid colouring exists 
   inside config, if so use the colouring



Translation validation
in the context evaluation by rewriting in the logic

Resulting theorem:

⊢ compile (config with colourings …) [source_prog] = 
       [0x48,0x39,0xF3,0x0F,0x83,0x0B,0x00,0x00,0x00,0xBF,0x07,0x00,

 0x00,0x00,0xE9,0xDD,0xFF,0xFF,0xFF,0x90,0x48,0x39,0xDA,0x0F,
 0x83,0x0B,0x00,0x00,0x00,0xBF,0x08,0x00,0x00,0x00,0xE9,0xC9,
 0xFF,0xFF,0xFF,0x90,0x48,0x89,0xD8,0x48,0x29,0xF0,0x49,0xB8,
 0xF8,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x49,0x39,0xC0,0x0F,
 0x83,0x0B,0x00,0x00,0x00,0xBF,0x03,0x00,0x00,0x00,0xE9,0xA5,
 0xFF,0xFF,0xFF,0x90,0x48,0x89,0xD8,0x41,0xB8,0xB8,0x1A,0x00,
 0x00,0x4C,0x01,0xC0,0x41,0xB8,0xF8,0x07,0x00,0x00,0x4C,0x39,
 0xC0,0x0F,0x83,0x0B,0x00,0x00,0x00,0xBF,0x04,0x00,0x00,0x00,
 0xE9,0x7F,0xFF,0xFF,0xFF,0x90,0x48,0x89,0xD0,0x48,0x29,0xD8,
 0x41,0xB8,0xC0,0x1A,0x00,0x00,0x4C,0x39,0xC0,0x0F,0x83,0x0B,

strange looking config, but 
theorem still fits compiler 

correctness theorem



What we learnt

Verified compilers can be bootstrapped.

Current research:  adding an efficient Eval primitive to the
     CakeML language and its implementation

compiler backend

machine code

synthesise AST

function in the logic input:  compiler function

output:  verified implementation of 
compiler function

no translation validation

in-logic evaluation uses 
translation validation



Extra slides about current research

Current research:  adding an efficient Eval primitive to the
     CakeML language and its implementation



Compiler version 1 (2014) has a verified read-eval-print loop.

ad hoc implementation and proof

fun	  loop	  n	  =	  	  
	  	  case	  read	  ()	  of	  
	  	  	  	  NONE	  =>	  ()	  
	  	  |	  SOME	  input	  =>	  loop	  (eval	  n	  (parse_wrap_print	  input));	  

loop	  basis_environment;

For version 3, wouldn’t it be nicer to compile:

primitive in language

… and eval could be used to implement 
native-compute-style reflection in (verified) theorem provers.

Version 2 does not.

Let’s add Eval primitive to CakeML



Eval primitive
The read-eval-print loop sketch from before:

fun	  loop	  n	  =	  	  
	  	  case	  read	  ()	  of	  
	  	  	  	  NONE	  =>	  ()	  
	  	  |	  SOME	  input	  =>	  	  
	  	  	  	  	  	  loop	  (eval	  n	  (parse_wrap_print	  input));	  

loop	  basis_environment;;

Type of eval primitive:

eval	  :	  environment;	  -‐>	  ast	  -‐>	  environment;

… is evaluated in a 
given environment.

A list of declarations …

Returns the input environment 
extended with the new decls.



Communicating results

val	  res	  =	  ref	  0;	  

environment	  n;	  

val	  _	  =	  eval	  n	  (parse	  “val	  _	  =	  (res	  :=	  1+2)”);	  

print_int	  (!res);	  

We propose that references are used:

This approach ensures that res has a 
type that is defined outside of eval

Declares an environment (incl res) 

… which is used by eval



Interesting case

val	  res	  =	  ref	  (Bind:exception);	  

environment	  n;	  

eval	  n	  (parse	  "exception	  Foo	  of	  int;	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  res	  :=	  Foo	  4;");	  

eval	  n	  (parse	  "exception	  Foo	  of	  bool;	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  case	  !res	  of	  Foo	  b	  =>	  (b	  =	  true)");	  

res contains Foo 4 Foo refers to local definition

Solution:  semantics adds timestamp to each datatype. 



Semantics of Eval

evaluate env state (Eval n x) =
  case evaluate_list env state [n,x] of
  | (Rval [Environment tenv env’, decs],s) =>
      (case has_type tenv decs of
       | None => (Rerr (Raise NoType),s)
       | Some tenv’ => 
            (case evaluate_decs env’ s’ decs of 
             | (Rval env’’,s’’) => (Rval (Environment tenv’ env’’),s’’))
             | res => res))
  | (Rval _,s’) => (Rerr Error,s’)
  | res => res

evaluate arguments

type check

evaluate given 
declarations

if successful, return 
new environment

(functional big-step clock tick omitted above)



How to compile Eval primitive?

Intuition:  we want Eval = compile then run native code

We have the bootstrapped compiler…

… with which we can produce machine code at source level.

How do we use the machine code at the source level?



run (install (compile e))

Compile Eval e to:

compile to machine code

… write bytes into memory

… and jump to the new bytes.



The compiler

To keep formulas free of clutter, let’s assume:

This is not entirely true: the compiler has config and state.

compile	  =	  passn-1 ⚬ passn-2 ⚬ … ⚬ pass1 ⚬ pass0

compile	  :	  ast -‐> byte list



First compiler pass

pass0 (Eval n x) =
	  	  let	  	  
	  	  	  	  val	  (n,x)	  =	  (pass0 n,	  pass0 x)	  	  
	  	  in
	  	  	  	  case	  infer_types	  n	  x	  of	  
	  	  	  	  	  	  None	  =>	  raise	  NoType	  
	  	  	  	  |	  Some	  n’	  =>	  (InstallAndRun	  (compile	  x);	  n’)	  
	  	  end

New primitive in every IL

… that transports machine code downwards.

calls normal source 
code in prelude

calls normal source 
code in prelude

Typewriter font is compiler-generated AST



Semantics of InstallAndRun

evaluate env state (InstallAndRun x) =
  case evaluate env state x of
  | (Rval v,s) =>
      let (env’,exp,s’) = next_guess s in 
        if v ≠ (passn-1 ⚬ … ⚬ passk) exp
        then Rerr Error 
        else evaluate env’ s’ exp
  | res => res

evaluate argument

uses oracle to guess 
the expression in IL k

if the guess is wrong 
then exec gets stuck

otherwise, evaluate 
the expression

The state contains an oracle: an infinite sequence expressions. 
The next_guess function pops an element from the sequence.

For IL k:



Sketch of theorem for pass0

evaluate env s ast = (res,s’) ∧ res ≠ Rerr Error ∧
state_rel s t ∧ env_rel env env’ ⇒
∃guesses.
    evaluate env’ (set_guesses t guesses) (pass0 ast) = (res’,t’) ∧ 
    res_rel res res’ ∧ state_rel s’ t’

source semantics

semantics of first IL

there is some sequence of 
guesses that works Complicated: 

This proof needs to use our 
proof of soundness and 
completeness for type inferencer.



Subsequent passes

passk (InstallAndRun x) = InstallAndRun (passk x)

(Mostly) just propagate InstallAndRun:

At the bottom, InstallAndRun becomes 
clear-icache-and-jump. 

Late stage: write input bytes to memory
and then runs InstallAndRun. Simplifies InstallAndRun

InstallAndRun is almost a no-op



Theorem for other passes

evaluate env s exp = (res,s’) ∧ res ≠ Rerr Error ∧
state_rel s t ∧ env_rel env env’ ⇒
    evaluate env’ t (passk exp) = (res’,t’) ∧ 
    res_rel res res’ ∧ state_rel s’ t’

semantics of IL k+1

semantics of IL k

Here state_rel relates the guesses:

state_rel s t = 
  … ∧ ∀n.  s.guesses n = passk (s.guesses n)

Good news: ought to be an easy modification.
Bad news: every compiler pass needs to be updated.



If all this works, …
Then we can write read-eval-print-loops in CakeML:

fun	  loop	  n	  =	  	  
	  	  case	  read	  ()	  of	  
	  	  	  	  NONE	  =>	  ()	  
	  	  |	  SOME	  input	  =>	  	  
	  	  	  	  	  	  loop	  (eval	  n	  (parse_wrap_print	  input));	  

loop	  basis_environment;



If all this works, …
Then we can write read-eval-print-loops in CakeML:

fun	  loop	  n	  =	  	  
	  	  case	  read	  ()	  of	  
	  	  	  	  NONE	  =>	  ()	  
	  	  |	  SOME	  input	  =>	  	  
	  	  	  	  	  	  loop	  (eval	  n	  (parse_wrap_print	  input)	  
	  	  	  	  	  	  	  	  	  	  	  	  handle	  NoType	  	  	  =>	  (print	  …;	  n)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  |	  ParseErr	  =>	  (print	  …;	  n)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  |	  other	  	  	  	  =>	  (print	  …;	  n));	  

loop	  basis_environment;

… and build verified reflection mechanism in a verified theorem prover.


