Verification of an ML compiler

Lecture 4:
Compiler bootstrapping and
new directions

Marktoberdorf Summer School MOD 2017

Magnus O. Myreen, Chalmers University of Technology

Bootstrapping

Some people say:

I”

a compiler is not “real” until it is self-hosting

A

C meaning: it can compile itself)
A\

/ \
C “bootstrap”)

Bootstrapping

Some people say:

I”

a compiler is not “real” until it is self-hosting

This lecture:

|. how the CakeML compiler was bootstrapped

2. where CakeML is going next (version 3)

Required components
concrete syntax

'

SML parser function in the logic

type inferencer

™~ AST/
}

machine code

. = verified function in logic

Proof producing code generation

[If we input factorial ... &

function in the logic

llllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllll

f p
... then the toolchain produces

machine code and proves
: a theorem stating that the code
compiler backend behaves like the factorial function.
l / J
machine code . = verified function in logic

: = proof-producing tool

Required components
concrete syntax

'

SML parser function in the logic

type inferencer

™~ AST/
}

machine code

. = verified function in logic

-

o

~

input: verified compiler function i.e. composition of parser,
type inferencer and compiler backend

J

\

function in the logic

llllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllll

-
l output: verified implementation of

~

J

: compiler function
compiler backend

'

machine code

proof-producing tool

verified function in logic

The Missing Piece

function in the logic

llllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllll

AST

'

compiler backend

machine code

. = verified function in logic

“The CakeML Translator”

function in the logic

llllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllll

Performs a bottom-up translation of HOL functions into AST.

Proves: the generated AST behaves like the HOL function

A
(expressed as a typed logical relation)

Definitions

The translator states its theorems using a relation called Eval.

Eval env exp post =
dval. evaluate env exp € = (Rval val, &) A post val

We can express relationships between HOL and CakeML:

Eval env |5] (int 5)<(HOL integer]

if we define int as follows: CakeML AST]

inti = Av. (v=Liti) where i is an integer

T relates HOL i with CakeML value v, if v is an integer]

Bottom-up construction

Each stage derives a theorem of the form:

assumptions = Eval env exp (inv t)

Examples:

Eval env |n| (int n)

true

—
—

Eval eny

Eval eny

| (int n)
| (int 5)

Bottom-up construction

Examples:

Eval env |n] (intn) = Evalenv |n] (intn)

true = Evalenv |5]| (int 5)

Lemmas are used to translate compound terms:
Vel én l]
Eval env |e;]| (inti) A
Eval env |es] (int j) =
Eval env |e1 + ep| (int (i+4 j))

Example:
Eval env |n| (int n) = Eval env |n+5] (int (n+5))

Functions

(this arrow combines relations)

|

Eval env |£] ((int — int) f)

A function f from int to int:

The arrow is defined as follows:

(a N b) f for any inputs x and v, related by a ...)

Acl. Vxv. axv—
Ju. evaluate_closure clvuAb (f x) u

A A

[... some u is returned such that b relates it with the result of f x)

... when closure cl is applied to v ...)

Function Application

Evalenv |£]| ((a — b) f) N
Eval env |x| (a x) =

Eval env f x| (b (f x))

Example

We can now derive:

Eval env |f] ((int — int) f) = Evalenv |f 5] (int (f5))

A A

(assumption about variable f) (conclusion about f 5)

Lambda-abstraction

(instantiates the env)

(Vx v. a x v=>Eval (env|n—v]) |body| (b (f x))) =
Eval env |fn n => body]| ((a — b) f)

A

(smaller env)

Example:

Eval env |[fn n /T> n+5| ((int = int) (An.n+5))

(derived from theorem with assumption about n >

Type variables

Evaleny |[fn £ => fn x => f (f x) |
(((X%d) —a—a (lf;C\. f(fx))

(variable with type & = v = bool) (has type &)

Crucially: a can be instantiated once a more concrete type is used

A

(e.g. with the int relation which has type variable with type int @ v = bool)

User-defined constant

Suppose twice is defined to be A f x. f (f x)

One derives:

Evaleny |[fn £ => fn x => f (f x) |
(((a—=a) =a—a)(Afx f(fx)))

... and then the followi% assumes twice is bound in ML env)

DeclAssum |val twice = fn f => fn x => f (f x);| env —
Eval env |twice| (((a — a) — a — a) twice)

A

(CakeML name twice is related to HOL const twice)

Algorithm

Function translation is easy in non-recursive case:

Step I: bottom-up traversal following body of HOL
definition

Step 2: replace body with HOL name (rewriting) and
“store” CakeML code in env

/ assumes twice is bound in ML env)

DeclAssum |val twice = fn f => fn x => f (f x);| env —
Eval env |twice| (((a — a) — a — a) twice)

A

(CakeML name twice is related to HOL name twice)

Recursive functions?

gcdmn = if 0 <nthen gecd n (m mod n) else m

A

4)

a translation must make an

assumption about the
CakeML-HOL relation for gcl:\d

A

C ... but that’s what we are proving!)

o J

an abbreviation Solution

A restrictive assumption; restricts the forall inside the arrow)

Vv

Amn = Eval env |gcd| ((eq nat m — eq nat n — nat) ged)

where eqax = Ayv.(x=y)Aayv

Bottom-up translation of the rec. call produces:

Eval env |m| (nat m) A

Evalenv |n| (natn) A n#0 =

Eval env |m mod n| (nat (m mod n))

an abbreviation Solution

A restrictive assumption; restricts the forall inside the arrow)

Vv

Amn = Eval env |gcd| ((eq nat m — eq nat n — nat) ged)

where eqax = Ayv.(x=y)Aayv

At the top-level:

DedclAssum |fun gcd m = fn n => ...|enw =
Vmn. (0<n=An(mmodn)) = Amn

A

C This looks familiar...)

Solution

The termination proof for gcd produces an induction
theorem of the form:

VP. (VYmn.(0<n = Pn(mmodn)) = Pmn) = (Vmn. P mn)

\

4 The induction theorem is used to
remove these assumptions and finish

At the top-level: the translation. Y

DedclAssum |funlgcd m = fn n => ...|env =
Vmn. (0<n=An(mmodn)) = Amn

Result

The termination proof for gcd produces an induction
theorem of the form:

VP. (VYmn.(0<n = Pn(mmodn)) = Pmn) = (Vmn. P mn)

Final result:

DedclAssum |fun gcd m = fn n => ...| env =
Eval env |gcd| ((nat — nat — nat) gcd)

asimilar result to non-recursive case >

Can all HOL functions be translated to ML/

Can all HOL functions be translated to ML?
HOL has more pow//\erful semantics for = than ML

(HOLs equality can compare functions, MLs cannot)

HOL allows underspecification (e.g. missing cases) and
Hilbert’s choice. t

leads to side conditions in the translator theorems)

brief HOL4 demo (if time allows)

|dea

function in the logic << input: compiler function)

llllllllllllllllllllllllllllllllllll

synthesise AST << proves an Eval-theorem)

lllllllllllllllllllllllllllllllllll

: evaluation inside the logic in
compiler backend order to produce a theorem

machine code output: verified implementation of
compiler function

|dea

function in the logic << input: compiler function)

llllllllllllllllllllllllllllllllllll

synthesise AST << proves an Eval-theorem)

lllllllllllllllllllllllllllllllllll

: evaluation inside the logic in
compiler backend order to produce a theorem

TIME OUT (> 24 hours)

register allocator has bad complexity:
at least O(n3) where n is number of variables

Translation validation

in the context evaluation by rewriting in the logic
Register allocator is too slow for in-logic evaluation

Solution:

|. evaluate compiler to just before register allocation

— compile config [source prog] = ; don't expand definition)
imperative_to_target (reg_alloc config [graph] [IL-prog])

2. extract clash graph [graph]; find colouring outside of logic
3. instantiate config to include solution to colouring problem

4. make reg_alloc function checks if valid colouring exists
inside config, if so use the colouring

Translation validation

in the context evaluation by rewriting in the logic

g strange looking config, but

theorem still fits compiler
correctness theorem

Resulting theorem:

~

J

~ compile (config with colourings ...) [source_prog] =

[0x48,0x39,0xF3,0x0F ,0x83,0x0B,0x00,0x00,0x00,0xBF ,0x07 ,0x00,
0x00,0x00,0xE9,0xDD,0xFF,0xFF,0xFF,0x90,0x48,0x39,0xDA, 0x0F,
0x83,0x0B,0x00,0x00,0x00,0xBF ,0x08,0x00,0x00,0x00,0xE9,0x(C9,
OxFF,OxFF,0xFF,0x90,0x48,0x89,0xD8,0x48,0x29,0xF0,0x49,0xB8,
OxF8,0xFF,0xFF,0xFF,OxFF,0xFF,0xFF,0x00,0x49,0x39,0xC0O,0x0F,
0x83,0x0B,0x00,0x00,0x00,0xBF,0x03,0x00,0x00,0x00,0xE9, OxAS5,
OxFF,OxFF,0xFF,0x90,0x48,0x89,0xD8,0x41,0xB8,0xB8,0x1A,0x00,
0x00,0x4C,0x01,0xC0O,0x41,0xB8,0xF8,0x07,0x00,0x00,0x4C,0x39,
0xCO,0x0F ,0x83,0x0B,0x00,0x00,0x00,0xBF ,0x04 ,0x00,0x00,0x00,
OxE9,0x7F ,0xFF,0xFF,0xFF,0x90,0x48,0x89,0xD0,0x48,0x29,0xD8,

What we learnt

Verified compilers can be bootstrapped.

function in the logic << input: compiler function)

no translation validation

in-logic evaluation uses
compiler backend translation validation

machine code output: verified implementation of
compiler function

Current research: adding an efficient Eval primitive to the
CakeML language and its implementation

Extra slides about current research

Current research: adding an efficient Eval primitive to the
CakeML language and its implementation

Let’s add Eval primitive to CakeML

Compiler version | (2014) has a verified read-eval-print loop.

Version 2 does not.
(ad hoc implementation and proof)

For version 3, wouldn'’t it be nicer to compile:

fun loop n =
case read () of primitive in language)
NONE => ()

| SOME input => loop (eval n (parse_wrap_print input));

loop basis environment;

... and eval could be used to implement
native-compute-style reflection in (verified) theorem provers.

cval primitive

The read-eval-print loop sketch from before:

fun loop n =
case read () of
NONE => ()
| SOME input =>
loop (eval n (parse wrap _print input));

loop basis_environment;;

Type of eval primitive: [A list of declarations ...)

eval : environment; -> ast -> environment;

/\ A\

... is evaluated in a Returns the input environment
given environment. extended with the new decls.

Communicating results

We propose that references are used:

Declares an environment (incl r‘es))
val res = ref 0;

: ... Which is used by eval)
environment n;

val = eval n (parse “val = (res := 1+2)”);

print _int (!res);

This approach ensures that res has a
type that is defined outside of eval

Interesting case

val res = ref (Bind:exception);
environment n;

eval n (parse "exception Foo of int;
res := Foo 4;");

eval n (parse "exception Foo of bool;
case !res of Foo b => (b = true)");

A
(res contains Foo 46 [Foo refers to local definition)

Solution: semantics adds timestamp to each datatype.

Semantics of Eval

evaluate arguments)
evaluate env state (Eval n x) =

case evaluate_list env state [n,x] of

| (Rval [Environment tenv env, d@
type check)

(case has_type tenv decs of

None => (Rerr (Raise NoType),s)
Some tenv’ =>

(case evaluate decs env’s’decs of =——
(Rval env”,s”) => (Rval (Environment tenv’ env”),s”))

A

-

evaluate given
declarations

~

res => res)) - .
IT successtul, return
(Rval ,s”) => (Rerr Error,s’) [.]
O new environment
res == res

(functional big-step clock tick omitted above)

How to compile Eval primitive?

Intuition: we want Eval = compile then run native code

\

(We have the bootstrapped compiler...)

|

(... with which we can produce machine code at source level.)

How do we use the machine code at the source level?

Compile Eval e to:

run (install (conppi\e e))
| |

(compile to machine code)

(... write bytes into memory)

(... and jump to the new bytes.)

[he compiler

To keep formulas free of clutter, let’s assume:

compile : ast -> byte list

compile = passn.| O passn2 O ... O pass| O passo

This is not entirely true: the compiler has config and state.

First compiler pass

Typewriter font is compiler-generated AST)

-

passo (Eval n x) =
let

in - code in prelude

case infer_types n x of
None => raise NoType V
| Some n’ => (InstallAndRun (compile x); n’)

end A

(New primitive in every IL)
A

(... that transports machine code downwards.)

Semantics of InstallAndRun

For IL k:

evaluate env state (InstallAndRun x) =
case evaluate env state x of — { evaluate argument)
| (Rval v,s) => p .

uses oracle to guess

let (env’.exb,s’) = next suess S i ——
(env,exp,s) —5 the expression in IL k

if v # (passn-| O ... O passk) exp

then Rerr Error
else evaluate env’s’ exp

\

if the guess is wrong
L then exec gets stuck

— . N
‘ res == res otherwise, evaluate

the expression

The state contains an oracle: an infinite sequence expressions.
The next_guess function pops an element from the sequence.

Sketch of theorem for passo

source semantics)

evaluate env s ast = (res,s’) A res #+ Rerr Error A
state rel st A env_rel envenv =

semantics of first IL)

Jguesses.
evaluate env’ (set_guesses t guesses) (passo ast) = (res’,t’) A
res_rel res res’ A state rel s't’

there is some sequence of
guesses that works

Combplicated:

This proof needs to use our
proof of soundness and
completeness for type inferencer.

Subsequent passes

(Mostly) just propagate InstallAndRun:

passk (InstallAndRun x) = InstallAndRun (passk x)

Late stage: write input bytes to memory
and then runs InstallAndRun. ﬁ Simplifies InstallAndRun)

At the bottom, InstallAndRun becomes
g Ry .
clear-icache-and-jump. 1 InstallAndRun is almost a no-op)

Theorem for other passes

[semantics of IL k}> evaluate env s exp = (res,s’) A res #+ Rerr Error A
state _rel st A env_rel env env’' =

res_rel res res’ A state rel s't’

Here state rel relates the guesses:

state rel st =
... A Vn. s.guesses n = passk (s.guesses n)

Good news: ought to be an easy modification.
Bad news: every compiler pass needs to be updated.

f all this works, ...

Then we can write read-eval-print-loops in CakeML:

fun loop n =
case read () of
NONE => ()
| SOME input =>
loop (eval n (parse wrap print input));

loop basis environment;

f all this works, ...

Then we can write read-eval-print-loops in CakeML:

fun loop n =
case read () of
NONE => ()

| SOME input =>
loop (eval n (parse wrap_print input)
handle NoType => (print ..; n)
| ParseErr => (print ..; n)

| other => (print ..; n));

loop basis environment;

... and build verified reflection mechanism in a verified theorem prover.

