Verification of an ML compiler

Lecture 4: Compiler bootstrapping and new directions

Marktoberdorf Summer School MOD 2017

Magnus O. Myreen, Chalmers University of Technology

Bootstrapping

Some people say:

a compiler is not "real" until it is self-hosting

meaning: it can compile itself "bootstrap"

Bootstrapping

Some people say:

a compiler is not "real" until it is self-hosting

This lecture:

I. how the CakeML compiler was bootstrapped

2. where CakeML is going next (version 3)

Required components

Required components

The Missing Piece

"The CakeML Translator"

Performs a bottom-up translation of HOL functions into AST.

Proves: the generated AST behaves like the HOL function

expressed as a typed logical relation

Definitions

The translator states its theorems using a relation called Eval.

Eval *env* exp post = $\exists val$. evaluate env exp $\varepsilon = (\text{Rval } val, \varepsilon) \land post val$

We can express relationships between HOL and CakeML:

Eval
$$env \lfloor 5 \rfloor$$
 (int 5)HOL integerif we define int as follows:CakeMLAST

int $i = \lambda v$. (v = Lit i) where i is an integer relates HOL i with CakeML value v, if v is an integer

Bottom-up construction

Each stage derives a theorem of the form:

assumptions \implies Eval env exp (inv t)

Examples:

 $\begin{array}{rcl} \mathsf{Eval}\,\mathit{env}\,\lfloor \mathtt{n} \rfloor\,(\mathsf{int}\,n) & \Longrightarrow & \mathsf{Eval}\,\mathit{env}\,\lfloor \mathtt{n} \rfloor\,(\mathsf{int}\,n) \\ & \mathsf{true} & \Longrightarrow & \mathsf{Eval}\,\mathit{env}\,\lfloor \mathtt{5} \rfloor\,(\mathsf{int}\,\mathtt{5}) \end{array}$

Bottom-up construction

Examples:

Eval $env \lfloor n \rfloor$ (int n) \implies Eval $env \lfloor n \rfloor$ (int n) true \implies Eval $env \lfloor 5 \rfloor$ (int 5)

Lemmas are used to translate compound terms:

$$\forall e_1 \ e_2 \ i \ j.$$
Eval *env* $\lfloor e_1 \rfloor$ (int *i*) \land
Eval *env* $\lfloor e_2 \rfloor$ (int *j*) \Longrightarrow
Eval *env* $\lfloor e_1 + e_2 \rfloor$ (int $(i+j))$

Example:

 $\mathsf{Eval} \ env \ \lfloor \mathtt{n} \rfloor \ (\mathsf{int} \ n) \implies \mathsf{Eval} \ env \ \lfloor \mathtt{n+5} \rfloor \ (\mathsf{int} \ (n+5))$

Functions

A function *f* from int to int:

this arrow combines relations

Eval *env*
$$\lfloor f \rfloor$$
 ((int \rightarrow int) f)

The arrow is defined as follows:

Function Application

Eval *env* $\lfloor f \rfloor$ $((a \rightarrow b) f) \land$ Eval *env* $\lfloor x \rfloor$ $(a x) \Longrightarrow$ Eval *env* $\lfloor f x \rfloor$ (b (f x))

Example

We can now derive:

Lambda-abstraction

Example:

Eval *env*
$$\lfloor fn n = n+5 \rfloor$$
 ((int \rightarrow int) ($\lambda n. n+5$))

derived from theorem with assumption about n

Type variables

Crucially: a can be instantiated once a more concrete type is used e.g. with the int relation which has type variable with type int $\rightarrow v \rightarrow bool$

User-defined constant

Suppose twice is defined to be $\lambda f x$. f(f x)

One derives: Eval *env* $\lfloor fn f => fn x => f (f x) \rfloor$ $(((a \rightarrow a) \rightarrow a \rightarrow a) (\lambda f x. f (f x)))$

Algorithm

Function translation is easy in non-recursive case:

- Step 1: bottom-up traversal following body of HOL definition
- **Step 2:** replace body with HOL name (rewriting) and "store" CakeML code in env

Recursive functions?

gcd m n = if 0 < n then $gcd n (m \mod n)$ else m

a translation must make an assumption about the CakeML-HOL relation for gcd

... but that's what we are proving!

Bottom-up translation of the rec. call produces:

Eval *env* $\lfloor m \rfloor$ (nat *m*) \land Eval *env* $\lfloor n \rfloor$ (nat *n*) \land *n* \neq 0 \Longrightarrow Eval *env* $\lfloor m \mod n \rfloor$ (nat (*m* mod *n*))

At the top-level:

DedclAssum [fun gcd m = fn n => ...] $env \implies$ $\forall m n. (0 < n \Longrightarrow \land n (m \mod n)) \Longrightarrow \land m n$ This looks familiar...

Solution

The termination proof for gcd produces an *induction theorem* of the form:

 $\forall P. \ (\forall m \, n. \, (0 < n \implies P \, n \, (m \mod n)) \implies P \, m \, n) \implies (\forall m \, n. \, P \, m \, n)$

Result

The termination proof for gcd produces an *induction theorem* of the form:

 $\forall P. \ (\forall m \, n. \, (0 < n \implies P \, n \, (m \bmod n)) \implies P \, m \, n) \implies (\forall m \, n. \, P \, m \, n)$

Final result:

DedclAssum [fun gcd m = fn n => ...] $env \implies$ Eval env [gcd] ((nat \rightarrow nat \rightarrow nat) gcd) similar result to non-recursive case

Can all HOL functions be translated to ML?

Can all HOL functions be translated to ML?

No

HOL has more powerful semantics for = than ML HOL's equality can compare functions, ML's cannot

HOL allows underspecification (e.g. missing cases) and Hilbert's choice.

leads to side conditions in the translator theorems

brief HOL4 demo (if time allows)

Idea

Idea

Translation validation

in the context evaluation by rewriting in the logic

Register allocator is too slow for in-logic evaluation

Solution:

- I. evaluate compiler to just before register allocation
- compile config [source_prog] = don't expand definition
 imperative_to_target (reg_alloc config [graph] [IL-prog])
 - 2. extract clash graph [graph]; find colouring outside of logic
 - 3. *instantiate config* to include solution to colouring problem
 - 4. make reg_alloc function checks if valid colouring exists inside config, if so use the colouring

Translation validation

in the context evaluation by rewriting in the logic

strange looking config, but theorem still fits compiler correctness theorem

Resulting theorem:

Let compile (config with colourings ...) [source_prog] =

[0x48,0x39,0xF3,0x0F,0x83,0x0B,0x00,0x00,0x00,0xBF,0x07,0x00, 0x00,0x00,0xE9,0xDD,0xFF,0xFF,0xFF,0x90,0x48,0x39,0xDA,0x0F, 0x83,0x0B,0x00,0x00,0x00,0xBF,0x08,0x00,0x00,0x00,0xE9,0xC9, 0xFF,0xFF,0xFF,0x90,0x48,0x89,0xD8,0x48,0x29,0xF0,0x49,0x88, 0xF8,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x49,0x39,0xC0,0x0F, 0x83,0x0B,0x00,0x00,0x00,0xBF,0x03,0x00,0x00,0x00,0xE9,0xA5, 0xFF,0xFF,0xFF,0x90,0x48,0x89,0xD8,0x41,0xB8,0xB8,0x1A,0x00, 0x00,0x4C,0x01,0xC0,0x41,0xB8,0xF8,0x07,0x00,0x00,0x4C,0x39, 0xC0,0x0F,0x83,0x0B,0x00,0x00,0x00,0xBF,0x04,0x00,0x00,0x00,0x00, 0xE9,0x7F,0xFF,0xFF,0xFF,0xFF,0xFF,0x48,0x89,0xD0,0x48,0x29,0xD8,

What we learnt

Verified compilers can be bootstrapped.

Current research: adding an efficient **Eval** primitive to the CakeML language and its implementation

Extra slides about current research

Current research: adding an efficient **Eval** primitive to the CakeML language and its implementation

Let's add **Eval** primitive to CakeML

```
Compiler version I (2014) has a verified read-eval-print loop.
Version 2 does not.
ad hoc implementation and proof
```

For version 3, wouldn't it be nicer to compile:

```
fun loop n =
   case read () of
        NONE => ()
        SOME input => loop (eval n (parse_wrap_print input));
```

loop basis_environment;

... and **eval** could be used to implement native-compute-style reflection in (verified) theorem provers.

Eval primitive

The read-eval-print loop sketch from before:

```
fun loop n =
      case read () of
         NONE => ()
         SOME input =>
           loop (eval n (parse wrap print input));
    loop basis_environment;;
Type of eval primitive:
                                   A list of declarations ...
    eval : environment; -> ast -> environment;
      ... is evaluated in a
                                Returns the input environment
      given environment.
                                 extended with the new decls.
```

Communicating results

We propose that references are used:

Interesting case

```
val res = ref (Bind:exception);
```

```
environment n;
eval n (parse "exception Foo of int;
    res := Foo 4;");
eval n (parse "exception Foo of bool;
    case !res of Foo b => (b = true)");
    res contains Foo 4
    Foo refers to local definition
```

Solution: semantics adds timestamp to each datatype.

Semantics of Eval

(functional big-step clock tick omitted above)

How to compile Eval primitive? *Intuition:* we want Eval = compile then run native code We have the bootstrapped compiler... ... with which we can produce machine code at source level.

How do we use the machine code at the source level?

The compiler

To keep formulas free of clutter, let's assume:

compile : ast -> byte list compile = $pass_{n-1} \circ pass_{n-2} \circ \dots \circ pass_1 \circ pass_0$

This is not entirely true: the compiler has config and state.

First compiler pass

Semantics of InstallAndRun

For IL k:

The state contains an oracle: an infinite sequence expressions. The next_guess function pops an element from the sequence.

Sketch of theorem for passo

source semantics

evaluate env s ast = (res,s') \land res \neq Rerr Error \land

state_rel s $t \land env_rel env env' \Rightarrow$

∃guesses.

evaluate env' (set_guesses t guesses) (pass₀ ast) = (res',t') \land res rel res res' \land state rel s't'

there is some sequence of guesses that works

Complicated:

This proof needs to use our proof of soundness and completeness for type inferencer.

semantics of first IL

Subsequent passes

(Mostly) just propagate InstallAndRun:

 $pass_k$ (InstallAndRun x) = InstallAndRun ($pass_k x$)

Theorem for other passes

Here state_rel relates the guesses:

```
state_rel s t = \dots \land \forall n. s.guesses n = \text{pass}_k (s.guesses n)
```

Good news: ought to be an easy modification. Bad news: every compiler pass needs to be updated.

If all this works, ...

Then we can write read-eval-print-loops in CakeML:

```
fun loop n =
  case read () of
   NONE => ()
   SOME input =>
      loop (eval n (parse_wrap_print input));
```

loop basis_environment;

If all this works, ...

Then we can write read-eval-print-loops in CakeML:

```
fun loop n =
  case read () of
   NONE => ()
  | SOME input =>
    loop (eval n (parse_wrap_print input)
        handle NoType => (print ...; n)
        | ParseErr => (print ...; n)
        | other => (print ...; n));
```

loop basis_environment;

... and build verified reflection mechanism in a verified theorem prover.