Verification of an ML compiler

Lecture 3:
Closures, closure conversion and
call optimisations

Marktoberdorf Summer School MOD 2017

Magnus O. Myreen, Chalmers University of Technology

Implementing the ML abstractions

_

The two most

Interesting transitions

\

function values are implemented

(topic of this lecture)

data abstraction is implemented

(topic of previous lecture)

W

<
<

ML source
Intermediate
languages with
first-class
functions.
No size limits.

No first-class
functions.
No size limits.

Machine types.
Strict size limits.

Machine code

Value type before: (This is a minor simplification of
CakeMLs actual value type here.
—

v— —

Number int
Word64 wordé4

values contain code

|

| Block num (v list) Intermediate
| RefPtr num languages with
| Closure (v list) exp v first-class

| Recclosure (v list) (exp list) num functions.

No size limits.

. No first-class
Value types after: functions.

V = No size limits.

Number int

Word64 wordeé4
Block num (v list)
RefPtr num
CodePtr num

DeBruijn indexing

Cz\;n index into the environment)

element-of operation)
evaluate ([Var n],env,s) =

if n < length env then (Rval [el n env],s)
else (Rerr(Rabort Rtype error),s)

evaluate ([Let xs x2],env,s) =
case evaluate (xs,env,s) of
| (Rval vals,sl) => evaluate ([x2],vals ++ env,sl)
| res => res) \

value of new bound variables are
prefixed to the current environment

Semantics of closures

Closure creation in the concrete syntax:

fn v => e

Evaluation in the semantics:

evaluate ([Fn e],env,s) = (Rval [Closure env e],s)

no variable name given, since the created closure
we are using dB indexing captures the current env

Semantics of closures (cont.)

Function application in SML concrete syntax, e.g. fac 50

Evaluation in the semantics:

evaluate function
evaluate ([App el e2],env,s) = “==:Ji 2nd areument :j
case evaluate env s [el,e2] of 5

| (Rval [f,arg],sl) => ’
(case app_env_exp f arg of — fextract the closure’s
| Some (env,exp) => P and env

if sl.clock = @ then
(Rerr (Rabort Rtimeout_error), sl1) (evaluate
else \the exp
evaluate ([exp],env,dec _clock sl1)
| _ => (Rerr(Rabort Rtype_error),s1))
| res => res

app_env_exp (Closure env exp) arg = Some ([arg]++env, exp)

This lecture

Function values (called closures) bring challenges:

o Closures make stating the value relation harder

e Closures need to be compiled

e Vital optimisations

If time allows: a walk-through of the compiler diagram

This lecture

Function values (called closures) bring challenges:

0 Closures make stating the value relation harder

e Closures need to be compiled

e Vital optimisations

If time allows: a walk-through of the compiler diagram

Closures cause complications

Constant folding phase:

compile (Add (Lit i) (Lit j)) = Lit (i+3)
compile (Fn e) = Fn (compile e)

Evaluation in the semantics:

evaluate ([Add (Lit 3) (Lit 5)],env,s)
(Rval (Number 8),s)

evaluate ([compile (Aay (Lit 3) (Lit 5))],env,s)
evaluate ([Lit 8],env,s
(Rval (Number 8),s)

optimised code produced
the same result — good!

Closures cause complications

Constant folding phase:

compile (Add (Lit i) (Lit j)) = Lit (i+3)
compile (Fn e) = Fn (compile e)

Evaluation in the semantics:

evaluate ([Fn (Add (Lit 3) (Lit 5))],env,s)
2??

evaluate ([compile (Fn (Add (Lit 3) (Lit 5)))],env,s)

evaluate ([Fn (Lit 8)],env,s)
2?2

Closures cause complications

Constant folding phase:

compile (Add (Lit i) (Lit j)) = Lit (i+3)
compile (Fn e) = Fn (compile e)

Evaluation in the semantics:

evaluate ([Fn (Add (Lit 3) (Lit 5))],env,s)
(Rval (Closure env (Add (Lit 3) (Lit 5))),s)

evaluate ([compile (Fn (Add (Lit 3))(Lit 5)))],env,s)
evaluate ([Fn (Lit 8)],env,s)
(Rval (Closure env (Lit 8)),s)

Values can no longer be

compared with equality

Value relation options

How do we relate values in presence of closures?

Closure env (Add (Lit 3) (Lit 5)))

Closure env (Lit 8)
[code in closure must be producedj

by the current compiler function

\

val rel list envl env2 e2 = compile el

Syntactic option:

val rel (Closure envl el) (Closure env2 e2)

Semantic option: gjargon: type-directed, step indexed,)

One can define a logical relation which relates
closures, if related inputs produce related outputs.

Definition:

val rel x y val rel list xs ys

val rel list (x::xs) (y::ys) val rel list [] []

code in closure must be produced
by the current compiler function

\

val rel list envl env2 e2 = compile el

Syntactic option:

val rel (Closure envl el) (Closure env2 e2)

Semantic option: gjargon: type-directed, step indexed,)

One can define a logical relation which relates
closures, if related inputs produce related outputs.

Pros and Cons

code in closure must be produced
by the current compiler function

\

val rel list envl env2 e2 = compile el

Syntactic option:

val rel (Closure envl el) (Closure env2 e2)

Pro: easy to set up Con: compiler specific, boilerplate repeated

Semantic option: jargon: type-directed, step indexed,)

One can define a logical relation which relates
closures, if related inputs produce related outputs.

Pro: can be expressive Con: can be very hard to set up

This lecture

Function values (called closures) bring challenges:

0 Closures make stating the value relation harder

e Closures need to be compiled

e Vital optimisations

If time allows: a walk-through of the compiler diagram

y | Closure conversion
alue type before:

V =
Number int
Wordé64 wordeé4
Block num (v list)

|
|
| RefPtr num languages with
|
|

Intermediate

Closure (v list) exp first-class

Recclosure (v list) (exp list) num functions.
No size limits.

. No first-class
Value types after: functions.

No size limits.

V =
Number int
| Wordé4 worde4
| Block num (v list)
| RefPtr num
| CodePtr num

Value type before: C I osure conversion

V =
Number int
| Wordé4 wordé4
| Block num (v list)
| RefPtr num
| Closure (v list) exp
| Recclosure (v list) (exp list) num

Value types after:

V =

Number int
Word64 wordé4
Block num (v list)
RefPtr num
CodePtr num

Closure values will be
represented as tuples
with a code pointer.

Value relation

:

values stored in Block

environment list must related to] [the compiled code for the body

must be in the global code store

val rel list code env vals

V

]

lookup p code = compile body

val rel code (Closure env body)

(Block clos _tag ([CodePtr p] ++ vals))

-

_

references or internal
pointers are used

~

A

-

J

V

Notes: mutually recursive closures are more complicated to
represent because they need to have each other in the env

_

the Block has a special marker so
that equality can distinguish
closures from other data

~

J

Minimal environments?

(env and vals are lists of same Iength]

VoV

val rel list code env vals lookup p code = compile body

val rel code (Closure env body)
(Block clos _tag ([CodePtr p] ++ vals))

A
(Are we wasting space!)

Reminder:

evaluate ([Fn e],env,s) = (Rval [Closure env e],s)
/\)
Yes! The env can contain values
that are never used in e.

Minimal environments?

(env and vals are lists of same Iength]

VoV

val rel list code env vals lookup p code = compile body

val rel code (Closure env body)
(Block clos _tag ([CodePtr p] ++ vals))

A
(Are we wasting space!)

Note: any descent compiler will shrink the environments that
are stored into the Blocks \

4)
CakeML implements this as a compiler

. phase right before closure conversion .

This lecture

Function values (called closures) bring challenges:

0 Closures make stating the value relation harder

e Closures need to be compiled

e Vital optimisations

If time allows: a walk-through of the compiler diagram

Optimisations with high impact

o

these optimisations combined reduce
running time by 60 % or more

v In \ --
I
X - N I -
N \ ST
===
e N
6 % % 2 %
% ° 067 %, %bf , 900/- : 900/- Q(/@ QLQ
© S %, %, ‘ %@ S
s 2 %- ®
No Optimisations =0 + Known 3 + Remove C—1

+ Multi + Calls ——3

Comparing ML compilers

4)

... and are crucial in making [

CakeML perform well
- /

3_

execution time 2° [

relativeto -
native-code
compiled 1.5
OCaml (red)

1 -

Ye) 77 o)
/}% o) @

ocamlopt 4.02.3 =
miton 20100608 =

sminj v110.78 ==
polyc v5.6

What do the optimisations do?

Answer: improve compilation of closures and calls

C in fact, they try to avoid closures if possible)

Naive implementations are slow

Example:

fun foo X y z = X+y+z;
val n = foo © 89 21;

The above is syntactic suga%‘

-

we are looking up the value
for foo, even though it is
possible to known statically

~

val foo = fn x => (fny => (fn z => Xx+y+z));

val n = ((foé/@) 89) 21;

(I

each application only consumes one argument at a time)

(... between each application a new closure is created)

Optimisation of function calls

fun reverse xs = let
fun append xs ys =
case xs of [] => ys
| (x::xs8) => x :: append XS ys;
fun rev xs =
case xs of [] => xs
| (x::xs8) => append (rev xs) [x]
in rev Xs end;
val example = reverse [1,2,3];

Optimisation of function calls

set_global O (fn xs => let
fun append xs = fn ys =>
if xs = [] then ys else
el O xs :: (append (el 1 xs)) ys
fun rev xs =
if xs = [] then xs else
(append (rev (el 1 xs))) [el O xs]
in rev xs end);
set_global 1 ((get_global 0) [1,2,3]);

Optimisation of function calls

true multi-argument closure)

set_global 0 (fnz xs/=> let
fun appendp (xs,ys) =
if xs = [] then ys else
el 0 xs :: append? (el 1 xs, ys)
fun revy xs =

if xs = [] then xs else
append® (rev? (el 1 xs), [el 0 xs])
in rev® xs end);

set_global 1 ((get_global 0)* [1,2,3]);

subscripts give each closure body a unique number

superscripts indicate that a known body is called

Optimisation of function calls

set_global 0 (fn xs => Call 5 (xs));
set_global 1 (Call 5 [1,2,3]);

Code Table:
1 (xs,ys) => if xs = [] then ys else
el 0 xs :: Call 1 (el 1 xs, ys)

3 (xs) => if xs = [] then xs else
Call 1 (Call 3 (el 1 xs), [el 0 xs])

5 (xs) => let
val append = O

val rev = 0O
in Call 3 (xs)—end

C-like function calls j

—

This lecture

If time allows: a walk-through of the compiler diagram

Values Languages Compiler transformations

source syntax

Parse concrete syntax
Infer types, exit if fail

Eliminate modules

names with numbers

no cons names
no declarations

exhaustive
pat. matches

Reduce declarations to
exps; introduce global vars

P
e
P
> Replace constructor
o
P

Make patterns exhaustive

Move nullary constructor
patterns upwards

Compile pattern matches
to nested Ifs and Lets

Rephrase language

Fuse function calls/apps
into multi-arg calls/apps

no pat. match

)

Track where closure values
flow; annotate program

Introduce C-style fast L4
calls wherever possible l Py
Remove deadcode a eS I/ erS l 0 n (]

Prepare for closure conv.

ClosLang:
last language
with closures
(has multi-arg

closures)

abstract values incl. closures and ref pointers

~—

L
L

Perform closure conv.

i
1

Inline small functions

| 2 intermediate languages (ILs)

shrink Lets
Split over-sized functions

BVL:

functional

language
without

" closures into many small functions ° ° ° ° °
Gonlo ol s and many within-IL optimisations
§ g Optimise Let-expressions
§ % Switch to imperative style ° °
(8]
o DatalLang: Reduce caller-saved vars h IL t th ght I I f b t t
eac at the ri evel of abstraction
g "q:) language memory allocations
T Y Remove data abstraction
Simplify program
WordLang: Select target instructions
imperative

Perform SSA-like renaming

Force two-reg code (if req.) (\

language with
machine words,

Flatten code \

LabLang: Delete no-ops (Tick, Skip)
assembly lang.
Encode program as

concrete machine code

J

memory and Remove deadcode
w a GC primitive v f t h b f t f
%; Allocate register names O r e e n e I O
g ———— Concretise stack 5
S StackLang: Implement GC primitive f d I I I I
% igﬁerative Turn stack access into P ro O S a' n C O P I e r
o language memory acceses
° with array-like Rename registers to match I I I l I I l I
g of)tt?::a?rgC arch registers/conventions I P I e e n tatl O n
O
©
S

L

i

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVILVAVAVAVAVAVAVILVAVAVAVAV

2 0 .

38 L N\

Lo | (ARMvE

RS !

20T

;.3 s CARMVB) Cx86-64) CMIPS-64) Cmsc-v)
© 2|

L

All languages communicate with the external world
via a byte-array-based foreign-function interface.

(next slide zooms in)

s
Values used by

_

the semantics

\

J

V

Values

Languages

source syntax
CEITD

[sou rce AST >

dules >
(romeaen)

(no cons names)

(no declaration)>

exhaustive
pat. matches

]>

-

-act values incl. closures and ref pointers

ClosLang:
last language
with closures
(has multi-arg

closures)

(no pat. match)>

YRRV

Compiler transformations

Parse concrete syntax
Infer types, exit if fail

Eliminate modules

Replace constructor
names with numbers

Reduce declarations to
exps; introduce global vars

Make patterns exhaustive

Move nullary constructor
patterns upwards

Compile pattern matches
to nested Ifs and Lets

Rephrase language

Both proved sound
and complete.

V

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values
flow; annotate program

Introduce C-style fast
calls wherever possible

Remove deadcode

4)
Parser and type
inferencer as before
- J
(")
Early phases reduce
the number of
language features
_ J
4)
Language with multi-
argument closures
- J

abstract values incl.

ref and code pointers

S

\/

abstract values incl. closu

ClosLang:
last language
with closures

(has multi-arg

closures)

~

J

-
BVL:

without
closures

G

functional
language

~

only 1 global,
handle in call

AN

-
Datalang

language

\

imperative

AN

WordLang:
Imperative

A\

JAVAVAVAVAVAVAVAVIRVAAVAVAVAVAVAVIRY

<« Rephrase language

<

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values
flow; annotate program

Introduce C-style fast
calls wherever possible

Remove deadcode

Prepare for closure conv.

Perform closure conv.
Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
into many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions
Switch to imperative style
Reduce caller-saved vars

Combine adjacent
memory allocations

Remove data abstraction
Simplify program

Select target instructions

DAF'FI\I’M QQ A,I“Iﬁ rnnnminn

Language with multi-
argument closures

Simple first-order
functional language

Imperative language

Machine-like types

Remove data abstraction

Simplify program :)
P PO Machine-like types

WordLang: > Select target instructions
imperative . .
language with > Perform SSA-like renaming N
machine words, > Force two-reg code (if req.) , :

SRS Imperative compiler
“ a GC primitive > Remove deadcode : :
0 | with an FP twist:
= > Allocate register names
© y | garbage collector,
g > Concretise stack : :
o 4 A o live-var annotations,
O StackLang: > Implement GC primitive fast excebtion
= . .
= Imperative > Turn stack access into . P
o language memory acceses mechanisms (for ML)
S with array-like
S ool > Rename registers to match | _ y
= optional GC arch registers/conventions
.GE) > Flatten code
-
S LabLang: Delete no-ops (Tick, Skip)
g [assembly lang. >

Encode program as
concrete machine code
< 4 ™
ARMvG6 \

ARMV8) (x86-64) CMIPS-64) CRISC-V) Targets 5 architectures

All languages communicate with the external world '\ J
via a byte-array-based foreign-function interface.

= 0]
25
N

m = |
= 0
2L
q

© = |

What we learnt

Function values (called closures) bring challenges:

Closures make stating the value relation harder
because closure values contain code, which is modified
by the compiler.

i comparing values with = does not work)

Closures need to be compiled to tuples that carry a
code pointer and a snapshot of the relevant environment.

Good compilation of closures and function applications
is crucial for performance.

Extra slides

Mutually recursive closures

Value: (env) list of function bodies)
Vv

vV = ...
| Recclosure (v list) (exp list) num index: which body
is to be used

Closure creation in the concrete syntax:

let fun f1 x = .. and f2 = .. and f3 = .. in .. end
Evaluation in the semantics: one binding
per function

evaluate ([Letrec funs rest],env,s) =
evaluate ([rest], build env funs ++ env, s)

build env fns = Genlist (Recclosure env fns) (length fns)

Genlist f n = if @ then [] else Genlist f (n-1) ++ [f (n-1)]

Application

evaluate ([App el e2],env,s) = — =4 same as on
case evaluate env s [el,e2] of L\ earlier slide
| (Rval [f,arg],sl) =>
(case app_env_exp f arg of (the new part)

| Some (env,exp) =>
if sl.clock = @ then
(Rerr (Rabort Rtimeout_error), sl)
else
evaluate ([exp],env,dec _clock sl1)
| _ => (Rerr(Rabort Rtype_error),sl))
| res => res

app_env_exp (Closure env exp) arg = Some ([arg]++env,|exp)

app_env_exp (Recclosure env funs index) arg =
if index < length funs then
Some ([arg] ++ build env funs ++ env, el index funs)
else None

