
Marktoberdorf Summer School MOD 2017

Magnus O. Myreen, Chalmers University of Technology

Verification of an ML compiler

Lecture 3:
 Closures, closure conversion and
 call optimisations

Implementing the ML abstractions
Compiler transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
cl

o
su

re
s

a
n

d
 r

e
f

p
o
in

te
rs

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
re

f
a
n
d
 c

o
d
e
 p

o
in

te
rs

m
a
ch

in
e
 w

o
rd

s
a
n
d
 c

o
d
e
 l
a
b
e
ls

6
4

-b
it

w

o
rd

s

no modules

no cons names

no declarations

exhaustive
pat. matches

no pat. match

3
2

-b
it

w
o
rd

s

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Eliminate modules
Replace constructor
names with numbers
Reduce declarations to
exps; introduce global vars
Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets
Rephrase language

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Prepare for closure conv.

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions
Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack
Implement GC primitive
Turn stack access into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL:
functional
language
without

closures

only 1 global,
handle in call

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

Intermediate
languages with

first-class
functions.

No size limits.

No first-class
functions.

No size limits.

Machine types.
Strict size limits.

Machine code

ML source

The two most
interesting transitions

function values are implemented
(topic of this lecture)

data abstraction is implemented
(topic of previous lecture)

No first-class
functions.

No size limits.

Value type before:

Value types after:

	 	 v	 =	
	 	 	 	 Number	 int	 	 	 	 	 	 	 	 	 	 	
	 	 |	 Word64	 word64	
	 	 |	 Block	 num	 (v	 list)	 	 	
	 	 |	 RefPtr	 num	 	 	 	 	 	 	
	 	 |	 Closure	 (v	 list)	 exp	
	 	 |	 Recclosure	 (v	 list)	 (exp	 list)	 num	

Intermediate
languages with

first-class
functions.

No size limits.

	 	 v	 =	
	 	 	 	 Number	 int	 	 	 	 	 	 	 	 	 	 	
	 	 |	 Word64	 word64	
	 	 |	 Block	 num	 (v	 list)	 	
	 	 |	 RefPtr	 num	 	 	 	 	 	 	 	 	
	 	 |	 CodePtr	 num	 	 	 	 	 	 	

This is a minor simplification of
CakeML’s actual value type here.

values contain codevalues contain code

DeBruijn indexing

	 	 	 evaluate	 ([Var	 n],env,s)	 =	
	 	 	 	 	 if	 n	 <	 length	 env	 then	 (Rval	 [el	 n	 env],s)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 else	 (Rerr(Rabort	 Rtype_error),s)	

	 	 	 evaluate	 ([Let	 xs	 x2],env,s)	 =	
	 	 	 	 	 case	 evaluate	 (xs,env,s)	 of	
	 	 	 	 	 |	 (Rval	 vals,s1)	 =>	 evaluate	 ([x2],vals	 ++	 env,s1)	
	 	 	 	 	 |	 res	 =>	 res)	

an index into the environment

element-of operation

value of new bound variables are
prefixed to the current environment

Semantics of closures

	 	 fn	 v	 =>	 e	

Closure creation in the concrete syntax:

Evaluation in the semantics:

	 	 	 evaluate	 ([Fn	 e],env,s)	 =	 (Rval	 [Closure	 env	 e],s)	

no variable name given, since
we are using dB indexing

the created closure
captures the current env

Function application in SML concrete syntax, e.g.

Semantics of closures (cont.)
	 	 fac	 50

Evaluation in the semantics:

	 	 	 evaluate	 ([App	 e1	 e2],env,s)	 =	
	 	 	 	 	 case	 evaluate	 env	 s	 [e1,e2]	 of	
	 	 	 	 	 |	 (Rval	 [f,arg],s1)	 =>	 	
	 	 	 	 	 	 	 	 	 (case	 app_env_exp	 f	 arg	 of	
	 	 	 	 	 	 	 	 	 	 |	 Some	 (env,exp)	 =>	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 if	 s1.clock	 =	 0	 then	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (Rerr	 (Rabort	 Rtimeout_error),	 s1)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 else	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 evaluate	 ([exp],env,dec_clock	 s1)	
	 	 	 	 	 	 	 	 	 	 |	 _	 =>	 (Rerr(Rabort	 Rtype_error),s1))	
	 	 	 	 	 |	 res	 =>	 res	

	 	 	 app_env_exp	 (Closure	 env	 exp)	 arg	 =	 Some	 ([arg]++env,	 exp)	

evaluate function
and argument

extract the closure’s
exp and env

evaluate
the exp

Closures need to be compiled

This lecture

Function values (called closures) bring challenges:

Closures make stating the value relation harder

Vital optimisations

1

2

3

If time allows: a walk-through of the compiler diagram

Closures need to be compiled

This lecture

Function values (called closures) bring challenges:

Closures make stating the value relation harder

Vital optimisations

1

2

3

If time allows: a walk-through of the compiler diagram

Closures cause complications

Constant folding phase:

compile	 (Add	 (Lit	 i)	 (Lit	 j))	 =	 Lit	 (i+j)	
compile	 (Fn	 e)	 =	 Fn	 (compile	 e)	
...

Evaluation in the semantics:

	 	 evaluate	 ([Add	 (Lit	 3)	 (Lit	 5)],env,s)	 	
=	 (Rval	 (Number	 8),s)

	 	 evaluate	 ([compile	 (Add	 (Lit	 3)	 (Lit	 5))],env,s)	 	
=	 evaluate	 ([Lit	 8],env,s)	 	
=	 (Rval	 (Number	 8),s)

optimised code produced
the same result — good!
optimised code produced
the same result — good!

Closures cause complications

Constant folding phase:

compile	 (Add	 (Lit	 i)	 (Lit	 j))	 =	 Lit	 (i+j)	
compile	 (Fn	 e)	 =	 Fn	 (compile	 e)	
...

Evaluation in the semantics:

	 	 evaluate	 ([Fn	 (Add	 (Lit	 3)	 (Lit	 5))],env,s)	 	
=	 ???

	 	 evaluate	 ([compile	 (Fn	 (Add	 (Lit	 3)	 (Lit	 5)))],env,s)	 	
=	 evaluate	 ([Fn	 (Lit	 8)],env,s)	 	
=	 ???	

Closures cause complications

Constant folding phase:

compile	 (Add	 (Lit	 i)	 (Lit	 j))	 =	 Lit	 (i+j)	
compile	 (Fn	 e)	 =	 Fn	 (compile	 e)	
...

Evaluation in the semantics:

	 	 evaluate	 ([Fn	 (Add	 (Lit	 3)	 (Lit	 5))],env,s)	 	
=	 (Rval	 (Closure	 env	 (Add	 (Lit	 3)	 (Lit	 5))),s)

	 	 evaluate	 ([compile	 (Fn	 (Add	 (Lit	 3)	 (Lit	 5)))],env,s)	 	
=	 evaluate	 ([Fn	 (Lit	 8)],env,s)	 	
=	 (Rval	 (Closure	 env	 (Lit	 8)),s)

Values can no longer be
compared with equality
Values can no longer be
compared with equality

Value relation options
How do we relate values in presence of closures?

	 	 Closure	 env	 (Add	 (Lit	 3)	 (Lit	 5)))	

	 	 Closure	 env	 (Lit	 8)	

Semantic option:

One can define a logical relation which relates
closures, if related inputs produce related outputs.

jargon: type-directed, step indexed, …

code in closure must be produced
by the current compiler function

Syntactic option:

val_rel	 (Closure	 env1	 e1)	 (Closure	 env2	 e2)	

val_rel_list	 env1	 env2	 e2	 =	 compile	 e1	

Semantic option:

One can define a logical relation which relates
closures, if related inputs produce related outputs.

jargon: type-directed, step indexed, …

code in closure must be produced
by the current compiler function

Syntactic option:

val_rel	 (Closure	 env1	 e1)	 (Closure	 env2	 e2)	

val_rel_list	 env1	 env2	 e2	 =	 compile	 e1	

Definition:

val_rel_list	 (x::xs)	 (y::ys)	

val_rel	 x	 y	 	 	 	 val_rel_list	 xs	 ys	

val_rel_list	 []	 []	 	

Pros and Cons

Semantic option:

One can define a logical relation which relates
closures, if related inputs produce related outputs.

code in closure must be produced
by the current compiler function

Pro: easy to set up Con: compiler specific, boilerplate repeated

Pro: can be expressive Con: can be very hard to set up

jargon: type-directed, step indexed, …

Syntactic option:

val_rel	 (Closure	 env1	 e1)	 (Closure	 env2	 e2)	

val_rel_list	 env1	 env2	 e2	 =	 compile	 e1	

Closures need to be compiled

This lecture

Function values (called closures) bring challenges:

Closures make stating the value relation harder

Vital optimisations

1

2

3

If time allows: a walk-through of the compiler diagram

Closure conversionValue type before:

Value types after:

	 	 v	 =	
	 	 	 	 Number	 int	 	 	 	 	 	 	 	 	 	 	
	 	 |	 Word64	 word64	
	 	 |	 Block	 num	 (v	 list)	 	 	
	 	 |	 RefPtr	 num	 	 	 	 	 	 	
	 	 |	 Closure	 (v	 list)	 exp	
	 	 |	 Recclosure	 (v	 list)	 (exp	 list)	 num	

	 	 v	 =	
	 	 	 	 Number	 int	 	 	 	 	 	 	 	 	 	 	
	 	 |	 Word64	 word64	
	 	 |	 Block	 num	 (v	 list)	 	
	 	 |	 RefPtr	 num	 	 	 	 	 	 	 	 	
	 	 |	 CodePtr	 num	 	 	 	 	 	 	

Intermediate
languages with

first-class
functions.

No size limits.

No first-class
functions.

No size limits.

Closure conversionValue type before:

Value types after:

	 	 v	 =	
	 	 	 	 Number	 int	 	 	 	 	 	 	 	 	 	 	
	 	 |	 Word64	 word64	
	 	 |	 Block	 num	 (v	 list)	 	 	
	 	 |	 RefPtr	 num	 	 	 	 	 	 	
	 	 |	 Closure	 (v	 list)	 exp	
	 	 |	 Recclosure	 (v	 list)	 (exp	 list)	 num	

	 	 v	 =	
	 	 	 	 Number	 int	 	 	 	 	 	 	 	 	 	 	
	 	 |	 Word64	 word64	
	 	 |	 Block	 num	 (v	 list)	 	
	 	 |	 RefPtr	 num	 	 	 	 	 	 	 	 	
	 	 |	 CodePtr	 num	 	 	 	 	 	 	

Closure values will be
represented as tuples
with a code pointer.

Value relation

val_rel	 code	 (Closure	 env	 body)	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 (Block	 clos_tag	 ([CodePtr	 p]	 ++	 vals))

val_rel_list	 code	 env	 vals	 	 	 	 lookup	 p	 code	 =	 compile	 body

environment list must related to
values stored in Block

the compiled code for the body
must be in the global code store

the Block has a special marker so
that equality can distinguish
closures from other data

Notes: mutually recursive closures are more complicated to
represent because they need to have each other in the env

references or internal
pointers are used

Minimal environments?

val_rel	 code	 (Closure	 env	 body)	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 (Block	 clos_tag	 ([CodePtr	 p]	 ++	 vals))

val_rel_list	 code	 env	 vals	 	 	 	 lookup	 p	 code	 =	 compile	 body

	 	 	 evaluate	 ([Fn	 e],env,s)	 =	 (Rval	 [Closure	 env	 e],s)	

Reminder:

Are we wasting space?

env and vals are lists of same lengthenv and vals are lists of same length

Yes! The env can contain values
that are never used in e.

Minimal environments?

val_rel	 code	 (Closure	 env	 body)	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 (Block	 clos_tag	 ([CodePtr	 p]	 ++	 vals))

val_rel_list	 code	 env	 vals	 	 	 	 lookup	 p	 code	 =	 compile	 body

Note:

Are we wasting space?

env and vals are lists of same lengthenv and vals are lists of same length

any descent compiler will shrink the environments that
are stored into the Blocks

CakeML implements this as a compiler
phase right before closure conversion

Closures need to be compiled

This lecture

Function values (called closures) bring challenges:

Closures make stating the value relation harder

Vital optimisations

1

2

3

If time allows: a walk-through of the compiler diagram

Optimisations with high impact18:24 Sco� Owens, Michael Norrish, Ramana Kumar, Magnus O. Myreen, and Yong Kiam Tan

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

btree
fib foldl

nqueens

qsortim
p

qsortim
p’

qsort

queue

reverse

No Optimisations
+ Multi

+ Known
+ Calls

+ Remove

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

btree
fib foldl

nqueens

qsortim
p

qsortim
p’

qsort

queue

reverse

7.2

ocamlopt 4.02.3
mlton 20100608

smlnj v110.78
polyc v5.6

cakeml

~

Fig. 10. (Top) Average execution time of the optimised benchmarks relative to the baseline (No Optimisations).
The C���L��� optimisations are applied additively from le� to right. (Bo�om) Comparison of average
execution times across ML implementations, relative to OCaml. The error bars show the maximum/minimum
times measured over 10 executions.

of the code before they can apply M����-like optimisations, since the standard requires left-to-
right evaluation order. Note also that the CakeML compiler uses bignum arithmetic for all of its
computations, while most of the other compilers (except Poly/ML) default to �xed sized integers.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 18. Publication date: September 2017.

these optimisations combined reduce
running time by 60 % or more

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

btree
fib foldl

nqueens

qsortimp

qsort
queue

reverse

ocamlopt 4.02.3
mlton 20100608

smlnj v110.78
polyc v5.6

cakeml

execution time
relative to

native-code
compiled

OCaml (red)

Comparing ML compilers
… and are crucial in making

CakeML perform well

What do the optimisations do?

Answer: improve compilation of closures and calls

in fact, they try to avoid closures if possible

we are looking up the value
for foo, even though it is

possible to known statically

Naive implementations are slow

fun	 foo	 x	 y	 z	 =	 x+y+z;	
val	 n	 =	 foo	 0	 89	 21;

Example:

each application only consumes one argument at a timeeach application only consumes one argument at a timeeach application only consumes one argument at a time

… between each application a new closure is created

The above is syntactic sugar for:

val	 foo	 =	 fn	 x	 =>	 (fn	 y	 =>	 (fn	 z	 =>	 x+y+z));	
val	 n	 =	 ((foo	 0)	 89)	 21;

The function must have arity n , and it must not contain any free
variables. An additional ticks number of Tick instructions are
performed after evaluating the arguments, but before making the
call.3

3. Example Optimisations
Two classes of examples motivate our design, one is the application
of a statically known function, and the other is the application of
an unknown function to more that one argument. In each case,
we should be able to get better performance than a straightforward
implementation of the semantics of CakeML. In the first case, the
application should avoid the cost of extracting a function pointer
from the closure record and jumping to it, and in the second case,
the allocation of intermediate closures should be avoided as each
argument is given to the unknown function.

Throughout the paper, we use the abstract syntax of CLOSLANG
(Fig. 1). However, to accommodate the larger examples in this
section, we use a notation more akin to source syntax here. In
particular, we use variable names rather than de Bruijn indices.
We saw the set_global and get_global operations earlier as
SetGlobal and Global respectively.

Example: statically known function calls
The following example illustrates how the CLOSLANG optimisa-
tions compile applications of statically known functions into fast
C-style function calls. We start with the concrete syntax (same as
SML’s) of an input CakeML program. This CakeML code defines
a naive, quadratic list reversing function using an append function
and applies the reverse function to an example.

fun reverse xs = let

fun append xs ys =

case xs of [] => ys

| (x::xs) => x :: append xs ys;

fun rev xs =

case xs of [] => xs

| (x::xs) => append (rev xs) [x]

in rev xs end;

val example = reverse [1,2,3];

It is compiled into the following CLOSLANG expression.
set_global 0 (fn xs => let

fun append xs = fn ys =>

if xs = [] then ys else

el 0 xs :: (append (el 1 xs)) ys

fun rev xs =

if xs = [] then xs else

(append (rev (el 1 xs))) [el 0 xs]

in rev xs end);

set_global 1 ((get_global 0) [1,2,3]);

Top-level definition reverse has been allocated to global location
0, and example to location 1. Functions append and rev are not
defined at the top-level, so they are defined in a Letrec. Further-
more, the pattern matching is compiled into ifs and calls to el

which extract elements of heap-allocated blocks.
The first optimisation we run, called MULTI, turns single-

argument closures and applications into multi-argument versions.
For example fun append xs = fn ys => ... turns into a declara-
tion that takes two arguments, xs and ys, simultaneously without
tupling or currying. We use the notation fun append hxs,ysi =

... for a function that takes simultaneous arguments. We use a
similar notation for applications: append hxs,ysi.

set_global 0 (fn xs => let

3 Although these ticks are important for the proofs, they have no operational
meaning.

fun append hxs,ysi =

if xs = [] then ys else

el 0 xs :: append hel 1 xs, ysi

fun rev xs =

if xs = [] then xs else

append hrev (el 1 xs), [el 0 xs]i

in rev xs end);

set_global 1 ((get_global 0) [1,2,3]);

The next two phases annotate the program with information
regarding closure values. The first annotation phase, NUMBER,
places a unique location in the first argument of each Fn and
Letrec, written here as a subscript. It uses only even numbers
for reasons that will be explained shortly. The second annotation
phase, KNOWN, performs a simple flow analysis that tracks which
closure values flow to which function applications. It annotates
each App that applies a statically known closure value whose arity
matches the number of arguments with the closure’s location. These
annotations are placed in the first argument to App, and are written
here as superscripts. Note that KNOWN tracks value flow even
through the globals, and adds an annotation (4) to the application
of get_global 0.

set_global 0 (fn

4

xs => let

fun append

0

hxs,ysi =

if xs = [] then ys else

el 0 xs :: append

0

hel 1 xs, ysi

fun rev

2

xs =

if xs = [] then xs else

append

0

hrev

2

(el 1 xs), [el 0 xs]i

in rev

2

xs end);

set_global 1 ((get_global 0)

4

[1,2,3]);

The CALLS optimisation is next. It moves closed function bod-
ies into a separate immutable code store, called the code table. Each
application of a closure value that has a code table entry turns into
a Call expression, which can then be compiled to an efficient C-
style function application. In the running example, we get entries
corresponding to append, rev and reverse, they are at code table
locations 1, 3 and 5 respectively.

set_global 0 (fn xs => Call 5 hxsi);

set_global 1 (Call 5 [1,2,3]);

Code Table:
1 hxs,ysi => if xs = [] then ys else

el 0 xs :: Call 1 hel 1 xs, ysi

3 hxsi => if xs = [] then xs else

Call 1 hCall 3 (el 1 xs), [el 0 xs]i

5 hxsi => let

fun append

0

hxs,ysi = Call 1 hxs,ysi

fun rev

2

xs = Call 3 hxsi

in Call 3 hxsi end

A simple dead-code elimination, REMOVE, replaces unused
closures with zeros. In our example, it only affects entry 5, which
becomes:

5 hxsi => let

val append = 0

val rev = 0

in Call 3 hxsi end

Subsequent optimisations later in the compiler remove these point-
less bindings. We defer the removal because it would require shift-
ing de Bruijn indices (not shown in our printing of the code).

The translation from CLOSLANG to the next intermediate lan-
guage, BVL, compiles away all Apps and closure creations. In our
example, there is only one closure left and no general-purpose func-

3 2016/7/7

Optimisation of function calls

The function must have arity n , and it must not contain any free
variables. An additional ticks number of Tick instructions are
performed after evaluating the arguments, but before making the
call.3

3. Example Optimisations
Two classes of examples motivate our design, one is the application
of a statically known function, and the other is the application of
an unknown function to more that one argument. In each case,
we should be able to get better performance than a straightforward
implementation of the semantics of CakeML. In the first case, the
application should avoid the cost of extracting a function pointer
from the closure record and jumping to it, and in the second case,
the allocation of intermediate closures should be avoided as each
argument is given to the unknown function.

Throughout the paper, we use the abstract syntax of CLOSLANG
(Fig. 1). However, to accommodate the larger examples in this
section, we use a notation more akin to source syntax here. In
particular, we use variable names rather than de Bruijn indices.
We saw the set_global and get_global operations earlier as
SetGlobal and Global respectively.

Example: statically known function calls
The following example illustrates how the CLOSLANG optimisa-
tions compile applications of statically known functions into fast
C-style function calls. We start with the concrete syntax (same as
SML’s) of an input CakeML program. This CakeML code defines
a naive, quadratic list reversing function using an append function
and applies the reverse function to an example.

fun reverse xs = let

fun append xs ys =

case xs of [] => ys

| (x::xs) => x :: append xs ys;

fun rev xs =

case xs of [] => xs

| (x::xs) => append (rev xs) [x]

in rev xs end;

val example = reverse [1,2,3];

It is compiled into the following CLOSLANG expression.
set_global 0 (fn xs => let

fun append xs = fn ys =>

if xs = [] then ys else

el 0 xs :: (append (el 1 xs)) ys

fun rev xs =

if xs = [] then xs else

(append (rev (el 1 xs))) [el 0 xs]

in rev xs end);

set_global 1 ((get_global 0) [1,2,3]);

Top-level definition reverse has been allocated to global location
0, and example to location 1. Functions append and rev are not
defined at the top-level, so they are defined in a Letrec. Further-
more, the pattern matching is compiled into ifs and calls to el

which extract elements of heap-allocated blocks.
The first optimisation we run, called MULTI, turns single-

argument closures and applications into multi-argument versions.
For example fun append xs = fn ys => ... turns into a declara-
tion that takes two arguments, xs and ys, simultaneously without
tupling or currying. We use the notation fun append hxs,ysi =

... for a function that takes simultaneous arguments. We use a
similar notation for applications: append hxs,ysi.

set_global 0 (fn xs => let

3 Although these ticks are important for the proofs, they have no operational
meaning.

fun append hxs,ysi =

if xs = [] then ys else

el 0 xs :: append hel 1 xs, ysi

fun rev xs =

if xs = [] then xs else

append hrev (el 1 xs), [el 0 xs]i

in rev xs end);

set_global 1 ((get_global 0) [1,2,3]);

The next two phases annotate the program with information
regarding closure values. The first annotation phase, NUMBER,
places a unique location in the first argument of each Fn and
Letrec, written here as a subscript. It uses only even numbers
for reasons that will be explained shortly. The second annotation
phase, KNOWN, performs a simple flow analysis that tracks which
closure values flow to which function applications. It annotates
each App that applies a statically known closure value whose arity
matches the number of arguments with the closure’s location. These
annotations are placed in the first argument to App, and are written
here as superscripts. Note that KNOWN tracks value flow even
through the globals, and adds an annotation (4) to the application
of get_global 0.

set_global 0 (fn

4

xs => let

fun append

0

hxs,ysi =

if xs = [] then ys else

el 0 xs :: append

0

hel 1 xs, ysi

fun rev

2

xs =

if xs = [] then xs else

append

0

hrev

2

(el 1 xs), [el 0 xs]i

in rev

2

xs end);

set_global 1 ((get_global 0)

4

[1,2,3]);

The CALLS optimisation is next. It moves closed function bod-
ies into a separate immutable code store, called the code table. Each
application of a closure value that has a code table entry turns into
a Call expression, which can then be compiled to an efficient C-
style function application. In the running example, we get entries
corresponding to append, rev and reverse, they are at code table
locations 1, 3 and 5 respectively.

set_global 0 (fn xs => Call 5 hxsi);

set_global 1 (Call 5 [1,2,3]);

Code Table:
1 hxs,ysi => if xs = [] then ys else

el 0 xs :: Call 1 hel 1 xs, ysi

3 hxsi => if xs = [] then xs else

Call 1 hCall 3 (el 1 xs), [el 0 xs]i

5 hxsi => let

fun append

0

hxs,ysi = Call 1 hxs,ysi

fun rev

2

xs = Call 3 hxsi

in Call 3 hxsi end

A simple dead-code elimination, REMOVE, replaces unused
closures with zeros. In our example, it only affects entry 5, which
becomes:

5 hxsi => let

val append = 0

val rev = 0

in Call 3 hxsi end

Subsequent optimisations later in the compiler remove these point-
less bindings. We defer the removal because it would require shift-
ing de Bruijn indices (not shown in our printing of the code).

The translation from CLOSLANG to the next intermediate lan-
guage, BVL, compiles away all Apps and closure creations. In our
example, there is only one closure left and no general-purpose func-

3 2016/7/7

Optimisation of function calls

The function must have arity n , and it must not contain any free
variables. An additional ticks number of Tick instructions are
performed after evaluating the arguments, but before making the
call.3

3. Example Optimisations
Two classes of examples motivate our design, one is the application
of a statically known function, and the other is the application of
an unknown function to more that one argument. In each case,
we should be able to get better performance than a straightforward
implementation of the semantics of CakeML. In the first case, the
application should avoid the cost of extracting a function pointer
from the closure record and jumping to it, and in the second case,
the allocation of intermediate closures should be avoided as each
argument is given to the unknown function.

Throughout the paper, we use the abstract syntax of CLOSLANG
(Fig. 1). However, to accommodate the larger examples in this
section, we use a notation more akin to source syntax here. In
particular, we use variable names rather than de Bruijn indices.
We saw the set_global and get_global operations earlier as
SetGlobal and Global respectively.

Example: statically known function calls
The following example illustrates how the CLOSLANG optimisa-
tions compile applications of statically known functions into fast
C-style function calls. We start with the concrete syntax (same as
SML’s) of an input CakeML program. This CakeML code defines
a naive, quadratic list reversing function using an append function
and applies the reverse function to an example.

fun reverse xs = let

fun append xs ys =

case xs of [] => ys

| (x::xs) => x :: append xs ys;

fun rev xs =

case xs of [] => xs

| (x::xs) => append (rev xs) [x]

in rev xs end;

val example = reverse [1,2,3];

It is compiled into the following CLOSLANG expression.
set_global 0 (fn xs => let

fun append xs = fn ys =>

if xs = [] then ys else

el 0 xs :: (append (el 1 xs)) ys

fun rev xs =

if xs = [] then xs else

(append (rev (el 1 xs))) [el 0 xs]

in rev xs end);

set_global 1 ((get_global 0) [1,2,3]);

Top-level definition reverse has been allocated to global location
0, and example to location 1. Functions append and rev are not
defined at the top-level, so they are defined in a Letrec. Further-
more, the pattern matching is compiled into ifs and calls to el

which extract elements of heap-allocated blocks.
The first optimisation we run, called MULTI, turns single-

argument closures and applications into multi-argument versions.
For example fun append xs = fn ys => ... turns into a declara-
tion that takes two arguments, xs and ys, simultaneously without
tupling or currying. We use the notation fun append hxs,ysi =

... for a function that takes simultaneous arguments. We use a
similar notation for applications: append hxs,ysi.

set_global 0 (fn xs => let

3 Although these ticks are important for the proofs, they have no operational
meaning.

fun append hxs,ysi =

if xs = [] then ys else

el 0 xs :: append hel 1 xs, ysi

fun rev xs =

if xs = [] then xs else

append hrev (el 1 xs), [el 0 xs]i

in rev xs end);

set_global 1 ((get_global 0) [1,2,3]);

The next two phases annotate the program with information
regarding closure values. The first annotation phase, NUMBER,
places a unique location in the first argument of each Fn and
Letrec, written here as a subscript. It uses only even numbers
for reasons that will be explained shortly. The second annotation
phase, KNOWN, performs a simple flow analysis that tracks which
closure values flow to which function applications. It annotates
each App that applies a statically known closure value whose arity
matches the number of arguments with the closure’s location. These
annotations are placed in the first argument to App, and are written
here as superscripts. Note that KNOWN tracks value flow even
through the globals, and adds an annotation (4) to the application
of get_global 0.

set_global 0 (fn

4

xs => let

fun append

0

hxs,ysi =

if xs = [] then ys else

el 0 xs :: append

0

hel 1 xs, ysi

fun rev

2

xs =

if xs = [] then xs else

append

0

hrev

2

(el 1 xs), [el 0 xs]i

in rev

2

xs end);

set_global 1 ((get_global 0)

4

[1,2,3]);

The CALLS optimisation is next. It moves closed function bod-
ies into a separate immutable code store, called the code table. Each
application of a closure value that has a code table entry turns into
a Call expression, which can then be compiled to an efficient C-
style function application. In the running example, we get entries
corresponding to append, rev and reverse, they are at code table
locations 1, 3 and 5 respectively.

set_global 0 (fn xs => Call 5 hxsi);

set_global 1 (Call 5 [1,2,3]);

Code Table:
1 hxs,ysi => if xs = [] then ys else

el 0 xs :: Call 1 hel 1 xs, ysi

3 hxsi => if xs = [] then xs else

Call 1 hCall 3 (el 1 xs), [el 0 xs]i

5 hxsi => let

fun append

0

hxs,ysi = Call 1 hxs,ysi

fun rev

2

xs = Call 3 hxsi

in Call 3 hxsi end

A simple dead-code elimination, REMOVE, replaces unused
closures with zeros. In our example, it only affects entry 5, which
becomes:

5 hxsi => let

val append = 0

val rev = 0

in Call 3 hxsi end

Subsequent optimisations later in the compiler remove these point-
less bindings. We defer the removal because it would require shift-
ing de Bruijn indices (not shown in our printing of the code).

The translation from CLOSLANG to the next intermediate lan-
guage, BVL, compiles away all Apps and closure creations. In our
example, there is only one closure left and no general-purpose func-

3 2016/7/7

Optimisation of function calls

subscripts give each closure body a unique number
superscripts indicate that a known body is called

true multi-argument closure

The function must have arity n , and it must not contain any free
variables. An additional ticks number of Tick instructions are
performed after evaluating the arguments, but before making the
call.3

3. Example Optimisations
Two classes of examples motivate our design, one is the application
of a statically known function, and the other is the application of
an unknown function to more that one argument. In each case,
we should be able to get better performance than a straightforward
implementation of the semantics of CakeML. In the first case, the
application should avoid the cost of extracting a function pointer
from the closure record and jumping to it, and in the second case,
the allocation of intermediate closures should be avoided as each
argument is given to the unknown function.

Throughout the paper, we use the abstract syntax of CLOSLANG
(Fig. 1). However, to accommodate the larger examples in this
section, we use a notation more akin to source syntax here. In
particular, we use variable names rather than de Bruijn indices.
We saw the set_global and get_global operations earlier as
SetGlobal and Global respectively.

Example: statically known function calls
The following example illustrates how the CLOSLANG optimisa-
tions compile applications of statically known functions into fast
C-style function calls. We start with the concrete syntax (same as
SML’s) of an input CakeML program. This CakeML code defines
a naive, quadratic list reversing function using an append function
and applies the reverse function to an example.

fun reverse xs = let

fun append xs ys =

case xs of [] => ys

| (x::xs) => x :: append xs ys;

fun rev xs =

case xs of [] => xs

| (x::xs) => append (rev xs) [x]

in rev xs end;

val example = reverse [1,2,3];

It is compiled into the following CLOSLANG expression.
set_global 0 (fn xs => let

fun append xs = fn ys =>

if xs = [] then ys else

el 0 xs :: (append (el 1 xs)) ys

fun rev xs =

if xs = [] then xs else

(append (rev (el 1 xs))) [el 0 xs]

in rev xs end);

set_global 1 ((get_global 0) [1,2,3]);

Top-level definition reverse has been allocated to global location
0, and example to location 1. Functions append and rev are not
defined at the top-level, so they are defined in a Letrec. Further-
more, the pattern matching is compiled into ifs and calls to el

which extract elements of heap-allocated blocks.
The first optimisation we run, called MULTI, turns single-

argument closures and applications into multi-argument versions.
For example fun append xs = fn ys => ... turns into a declara-
tion that takes two arguments, xs and ys, simultaneously without
tupling or currying. We use the notation fun append hxs,ysi =

... for a function that takes simultaneous arguments. We use a
similar notation for applications: append hxs,ysi.

set_global 0 (fn xs => let

3 Although these ticks are important for the proofs, they have no operational
meaning.

fun append hxs,ysi =

if xs = [] then ys else

el 0 xs :: append hel 1 xs, ysi

fun rev xs =

if xs = [] then xs else

append hrev (el 1 xs), [el 0 xs]i

in rev xs end);

set_global 1 ((get_global 0) [1,2,3]);

The next two phases annotate the program with information
regarding closure values. The first annotation phase, NUMBER,
places a unique location in the first argument of each Fn and
Letrec, written here as a subscript. It uses only even numbers
for reasons that will be explained shortly. The second annotation
phase, KNOWN, performs a simple flow analysis that tracks which
closure values flow to which function applications. It annotates
each App that applies a statically known closure value whose arity
matches the number of arguments with the closure’s location. These
annotations are placed in the first argument to App, and are written
here as superscripts. Note that KNOWN tracks value flow even
through the globals, and adds an annotation (4) to the application
of get_global 0.

set_global 0 (fn

4

xs => let

fun append

0

hxs,ysi =

if xs = [] then ys else

el 0 xs :: append

0

hel 1 xs, ysi

fun rev

2

xs =

if xs = [] then xs else

append

0

hrev

2

(el 1 xs), [el 0 xs]i

in rev

2

xs end);

set_global 1 ((get_global 0)

4

[1,2,3]);

The CALLS optimisation is next. It moves closed function bod-
ies into a separate immutable code store, called the code table. Each
application of a closure value that has a code table entry turns into
a Call expression, which can then be compiled to an efficient C-
style function application. In the running example, we get entries
corresponding to append, rev and reverse, they are at code table
locations 1, 3 and 5 respectively.

set_global 0 (fn xs => Call 5 hxsi);

set_global 1 (Call 5 [1,2,3]);

Code Table:
1 hxs,ysi => if xs = [] then ys else

el 0 xs :: Call 1 hel 1 xs, ysi

3 hxsi => if xs = [] then xs else

Call 1 hCall 3 (el 1 xs), [el 0 xs]i

5 hxsi => let

fun append

0

hxs,ysi = Call 1 hxs,ysi

fun rev

2

xs = Call 3 hxsi

in Call 3 hxsi end

A simple dead-code elimination, REMOVE, replaces unused
closures with zeros. In our example, it only affects entry 5, which
becomes:

5 hxsi => let

val append = 0

val rev = 0

in Call 3 hxsi end

Subsequent optimisations later in the compiler remove these point-
less bindings. We defer the removal because it would require shift-
ing de Bruijn indices (not shown in our printing of the code).

The translation from CLOSLANG to the next intermediate lan-
guage, BVL, compiles away all Apps and closure creations. In our
example, there is only one closure left and no general-purpose func-

3 2016/7/7

The function must have arity n , and it must not contain any free
variables. An additional ticks number of Tick instructions are
performed after evaluating the arguments, but before making the
call.3

3. Example Optimisations
Two classes of examples motivate our design, one is the application
of a statically known function, and the other is the application of
an unknown function to more that one argument. In each case,
we should be able to get better performance than a straightforward
implementation of the semantics of CakeML. In the first case, the
application should avoid the cost of extracting a function pointer
from the closure record and jumping to it, and in the second case,
the allocation of intermediate closures should be avoided as each
argument is given to the unknown function.

Throughout the paper, we use the abstract syntax of CLOSLANG
(Fig. 1). However, to accommodate the larger examples in this
section, we use a notation more akin to source syntax here. In
particular, we use variable names rather than de Bruijn indices.
We saw the set_global and get_global operations earlier as
SetGlobal and Global respectively.

Example: statically known function calls
The following example illustrates how the CLOSLANG optimisa-
tions compile applications of statically known functions into fast
C-style function calls. We start with the concrete syntax (same as
SML’s) of an input CakeML program. This CakeML code defines
a naive, quadratic list reversing function using an append function
and applies the reverse function to an example.

fun reverse xs = let

fun append xs ys =

case xs of [] => ys

| (x::xs) => x :: append xs ys;

fun rev xs =

case xs of [] => xs

| (x::xs) => append (rev xs) [x]

in rev xs end;

val example = reverse [1,2,3];

It is compiled into the following CLOSLANG expression.
set_global 0 (fn xs => let

fun append xs = fn ys =>

if xs = [] then ys else

el 0 xs :: (append (el 1 xs)) ys

fun rev xs =

if xs = [] then xs else

(append (rev (el 1 xs))) [el 0 xs]

in rev xs end);

set_global 1 ((get_global 0) [1,2,3]);

Top-level definition reverse has been allocated to global location
0, and example to location 1. Functions append and rev are not
defined at the top-level, so they are defined in a Letrec. Further-
more, the pattern matching is compiled into ifs and calls to el

which extract elements of heap-allocated blocks.
The first optimisation we run, called MULTI, turns single-

argument closures and applications into multi-argument versions.
For example fun append xs = fn ys => ... turns into a declara-
tion that takes two arguments, xs and ys, simultaneously without
tupling or currying. We use the notation fun append hxs,ysi =

... for a function that takes simultaneous arguments. We use a
similar notation for applications: append hxs,ysi.

set_global 0 (fn xs => let

3 Although these ticks are important for the proofs, they have no operational
meaning.

fun append hxs,ysi =

if xs = [] then ys else

el 0 xs :: append hel 1 xs, ysi

fun rev xs =

if xs = [] then xs else

append hrev (el 1 xs), [el 0 xs]i

in rev xs end);

set_global 1 ((get_global 0) [1,2,3]);

The next two phases annotate the program with information
regarding closure values. The first annotation phase, NUMBER,
places a unique location in the first argument of each Fn and
Letrec, written here as a subscript. It uses only even numbers
for reasons that will be explained shortly. The second annotation
phase, KNOWN, performs a simple flow analysis that tracks which
closure values flow to which function applications. It annotates
each App that applies a statically known closure value whose arity
matches the number of arguments with the closure’s location. These
annotations are placed in the first argument to App, and are written
here as superscripts. Note that KNOWN tracks value flow even
through the globals, and adds an annotation (4) to the application
of get_global 0.

set_global 0 (fn

4

xs => let

fun append

0

hxs,ysi =

if xs = [] then ys else

el 0 xs :: append

0

hel 1 xs, ysi

fun rev

2

xs =

if xs = [] then xs else

append

0

hrev

2

(el 1 xs), [el 0 xs]i

in rev

2

xs end);

set_global 1 ((get_global 0)

4

[1,2,3]);

The CALLS optimisation is next. It moves closed function bod-
ies into a separate immutable code store, called the code table. Each
application of a closure value that has a code table entry turns into
a Call expression, which can then be compiled to an efficient C-
style function application. In the running example, we get entries
corresponding to append, rev and reverse, they are at code table
locations 1, 3 and 5 respectively.

set_global 0 (fn xs => Call 5 hxsi);

set_global 1 (Call 5 [1,2,3]);

Code Table:
1 hxs,ysi => if xs = [] then ys else

el 0 xs :: Call 1 hel 1 xs, ysi

3 hxsi => if xs = [] then xs else

Call 1 hCall 3 (el 1 xs), [el 0 xs]i

5 hxsi => let

fun append

0

hxs,ysi = Call 1 hxs,ysi

fun rev

2

xs = Call 3 hxsi

in Call 3 hxsi end

A simple dead-code elimination, REMOVE, replaces unused
closures with zeros. In our example, it only affects entry 5, which
becomes:

5 hxsi => let

val append = 0

val rev = 0

in Call 3 hxsi end

Subsequent optimisations later in the compiler remove these point-
less bindings. We defer the removal because it would require shift-
ing de Bruijn indices (not shown in our printing of the code).

The translation from CLOSLANG to the next intermediate lan-
guage, BVL, compiles away all Apps and closure creations. In our
example, there is only one closure left and no general-purpose func-

3 2016/7/7

C-like function callsC-like function callsC-like function calls

Optimisation of function calls

This lecture

If time allows: a walk-through of the compiler diagram

Latest version:
12 intermediate languages (ILs)
and many within-IL optimisations

each IL at the right level of abstraction

for the benefit of
proofs and compiler

implementation

(next slide zooms in)

Compiler transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
cl

o
su

re
s

a
n

d
 r

e
f

p
o
in

te
rs

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
re

f
a
n
d
 c

o
d
e
 p

o
in

te
rs

m
a
ch

in
e
 w

o
rd

s
a
n
d
 c

o
d
e
 l
a
b
e
ls

6
4

-b
it

w

o
rd

s

no modules

no cons names

no declarations

exhaustive
pat. matches

no pat. match

3
2

-b
it

w
o
rd

s

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Eliminate modules
Replace constructor
names with numbers
Reduce declarations to
exps; introduce global vars
Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets
Rephrase language

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Prepare for closure conv.

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions
Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack
Implement GC primitive
Turn stack access into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL:
functional
language
without

closures

only 1 global,
handle in call

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

Compiler transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
cl

o
su

re
s

a
n

d
 r

e
f

p
o
in

te
rs

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
re

f
a
n
d
 c

o
d
e
 p

o
in

te
rs

m
a
ch

in
e
 w

o
rd

s
a
n
d
 c

o
d
e
 l
a
b
e
ls

6
4

-b
it

w

o
rd

s

no modules

no cons names

no declarations

exhaustive
pat. matches

no pat. match

3
2

-b
it

w
o
rd

s

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Eliminate modules
Replace constructor
names with numbers
Reduce declarations to
exps; introduce global vars
Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets
Rephrase language

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Prepare for closure conv.

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions
Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack
Implement GC primitive
Turn stack access into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL:
functional
language
without

closures

only 1 global,
handle in call

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

Values used by
the semantics

Parser and type
inferencer as before

Early phases reduce
the number of

language features

Language with multi-
argument closures

Both proved sound
and complete.

Compiler transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
cl

o
su

re
s

a
n

d
 r

e
f

p
o
in

te
rs

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
re

f
a
n
d
 c

o
d
e
 p

o
in

te
rs

m
a
ch

in
e
 w

o
rd

s
a
n
d
 c

o
d
e
 l
a
b
e
ls

6
4

-b
it

w

o
rd

s

no modules

no cons names

no declarations

exhaustive
pat. matches

no pat. match

3
2

-b
it

w
o
rd

s
ClosLang:

last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Eliminate modules
Replace constructor
names with numbers
Reduce declarations to
exps; introduce global vars
Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets
Rephrase language

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Prepare for closure conv.

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions
Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack
Implement GC primitive
Turn stack access into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL:
functional
language
without

closures

only 1 global,
handle in call

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

Language with multi-
argument closures

 Simple first-order
functional language

Imperative language

Machine-like types

Compiler transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
cl

o
su

re
s

a
n

d
 r

e
f

p
o
in

te
rs

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
re

f
a
n
d
 c

o
d
e
 p

o
in

te
rs

m
a
ch

in
e
 w

o
rd

s
a
n
d
 c

o
d
e
 l
a
b
e
ls

6
4

-b
it

w

o
rd

s

no modules

no cons names

no declarations

exhaustive
pat. matches

no pat. match

3
2

-b
it

w
o
rd

s

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Eliminate modules
Replace constructor
names with numbers
Reduce declarations to
exps; introduce global vars
Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets
Rephrase language

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Prepare for closure conv.

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions
Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack
Implement GC primitive
Turn stack access into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL:
functional
language
without

closures

only 1 global,
handle in call

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

Machine-like types

Imperative compiler
with an FP twist:
garbage collector,

live-var annotations,
fast exception

mechanisms (for ML)

Targets 5 architectures

Closures need to be compiled to tuples that carry a
code pointer and a snapshot of the relevant environment.

What we learnt

Function values (called closures) bring challenges:

Closures make stating the value relation harder
because closure values contain code, which is modified
by the compiler.

Good compilation of closures and function applications
is crucial for performance.

comparing values with = does not work

1

2

3

Extra slides

Mutually recursive closures

Closure creation in the concrete syntax:
let	 fun	 f1	 x	 =	 …	 and	 f2	 =	 …	 and	 f3	 =	 …	 in	 …	 end	

	 	 v	 =	 ...	
	 	 |	 Recclosure	 (v	 list)	 (exp	 list)	 num	

Value: env list of function bodies

index: which body
 is to be used

Evaluation in the semantics:

evaluate	 ([Letrec	 funs	 rest],env,s)	 =	
	 	 evaluate	 ([rest],	 build	 env	 funs	 ++	 env,	 s)	
	 	 	
build	 env	 fns	 =	 Genlist	 (Recclosure	 env	 fns)	 (length	 fns)	 	

Genlist	 f	 n	 =	 if	 0	 then	 []	 else	 Genlist	 f	 (n-‐1)	 ++	 [f	 (n-‐1)]

one binding
per function

Application
	 	 	 evaluate	 ([App	 e1	 e2],env,s)	 =	
	 	 	 	 	 case	 evaluate	 env	 s	 [e1,e2]	 of	
	 	 	 	 	 |	 (Rval	 [f,arg],s1)	 =>	 	
	 	 	 	 	 	 	 	 	 (case	 app_env_exp	 f	 arg	 of	
	 	 	 	 	 	 	 	 	 	 |	 Some	 (env,exp)	 =>	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 if	 s1.clock	 =	 0	 then	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (Rerr	 (Rabort	 Rtimeout_error),	 s1)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 else	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 evaluate	 ([exp],env,dec_clock	 s1)	
	 	 	 	 	 	 	 	 	 	 |	 _	 =>	 (Rerr(Rabort	 Rtype_error),s1))	
	 	 	 	 	 |	 res	 =>	 res	

	 	 	 app_env_exp	 (Closure	 env	 exp)	 arg	 =	 Some	 ([arg]++env,	 exp)	
	 	 	 	
	 	 	 app_env_exp	 (Recclosure	 env	 funs	 index)	 arg	 =	 	
	 	 	 	 	 if	 index	 <	 length	 funs	 then	 	
	 	 	 	 	 	 	 Some	 ([arg]	 ++	 build	 env	 funs	 ++	 env,	 el	 index	 funs)	
	 	 	 	 	 else	 None	

same as on
earlier slide

the new part

