
Marktoberdorf Summer School MOD 2017

Magnus O. Myreen, Chalmers University of Technology

Verification of an ML compiler

Lecture 1:
 An introduction to compiler
 verification

Introduction

Your program crashes.
Where do you look for the fault?

Do you look at your source code?

Do look at the code for the compiler you used?

users want to rely on compilers

Verified compilers
What?

A verified compiler is a compiler that
comes with a machine-checker proof. The
proof states that the compiler preserves
the behaviour of source programs.

Traditional compiler development relies on testing.
Compiler verification is considered too costly.

cost reduction?

All (unverified) compilers have bugs

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing

{

j

x

y

a

n

g

,

c

h

e

n

y

a

n

g

,

e

e

i

d

e

,

r

e

g

e

h

r

}

@

c

s

.

u

t

a

h

.

e

d

u

Abstract
Compilers should be correct. To improve the quality of C compilers,

we created Csmith, a randomized test-case generation tool, and

spent three years using it to find compiler bugs. During this period

we reported more than 325 previously unknown bugs to compiler

developers. Every compiler we tested was found to crash and also

to silently generate wrong code when presented with valid input.

In this paper we present our compiler-testing tool and the results

of our bug-hunting study. Our first contribution is to advance the

state of the art in compiler testing. Unlike previous tools, Csmith

generates programs that cover a large subset of C while avoiding the

undefined and unspecified behaviors that would destroy its ability

to automatically find wrong-code bugs. Our second contribution is a

collection of qualitative and quantitative results about the bugs we

have found in open-source C compilers.

C

a

t

e

g

o

r

i

e

s

a

n

d

S

u

b

j

e

c

t

D

e

s

c

r

i

p

t

o

r

s

D.2.5 [Software Engineer-

ing]: Testing and Debugging—testing tools; D.3.2 [Programming

Languages]: Language Classifications—C; D.3.4 [Programming

Languages]: Processors—compilers

G

e

n

e

r

a

l

T

e

r

m

s

Languages, Reliability

K

e

y

w

o

r

d

s

compiler testing, compiler defect, automated testing,

random testing, random program generation

1. Introduction
The theory of compilation is well developed, and there are compiler

frameworks in which many optimizations have been proved correct.

Nevertheless, the practical art of compiler construction involves a

morass of trade-offs between compilation speed, code quality, code

debuggability, compiler modularity, compiler retargetability, and

other goals. It should be no surprise that optimizing compilers—like

all complex software systems—contain bugs.

Miscompilations often happen because optimization safety

checks are inadequate, static analyses are unsound, or transfor-

mations are flawed. These bugs are out of reach for current and

future automated program-verification tools because the specifica-

tions that need to be checked were never written down in a precise

way, if they were written down at all. Where verification is imprac-

tical, however, other methods for improving compiler quality can

succeed. This paper reports our experience in using testing to make

C compilers better.

c� ACM, 2011. This is the author’s version of the work. It is posted here by permission

of ACM for your personal use. Not for redistribution.

The definitive version was published in Proceedings of the 2011 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), San Jose,

CA, Jun. 2011, http://doi.acm.org/10.
1

1

4

5

/

N

N

N

N

N

N

N

.

N

N

N

N

N

N

N

1 i

n

t

f

o

o

(

v

o

i

d

)

{

2 s

i

g

n

e

d

c

h

a

r

x

=

1

;

3 u

n

s

i

g

n

e

d

c

h

a

r

y

=

2

5

5

;

4 r

e

t

u

r

n

x

>

y

;

5 }

Figure 1. We found a bug in the version of GCC that shipped with

Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles

this function to return 1; the correct result is 0. The Ubuntu compiler

was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-

ports compiler bug-hunting using differential testing. Csmith gen-

erates a C program; a test harness then compiles the program us-

ing several compilers, runs the executables, and compares the out-

puts. Although this compiler-testing approach has been used be-

fore [6, 16, 23], Csmith’s test-generation techniques substantially

advance the state of the art by generating random programs that

are expressive—containing complex code using many C language

features—while also ensuring that every generated program has a

single interpretation. To have a unique interpretation, a program

must not execute any of the 191 kinds of undefined behavior, nor

depend on any of the 52 kinds of unspecified behavior, that are

described in the C99 standard.

For the past three years, we have used Csmith to discover bugs

in C compilers. Our results are perhaps surprising in their extent: to

date, we have found and reported more than 325 bugs in mainstream

C compilers including GCC, LLVM, and commercial tools. Figure 1

shows a representative example. Every compiler that we have tested,

including several that are routinely used to compile safety-critical

embedded systems, has been crashed and also shown to silently

miscompile valid inputs. As measured by the responses to our bug

reports, the defects discovered by Csmith are important. Most of

the bugs we have reported against GCC and LLVM have been

fixed. Twenty-five of our reported GCC bugs have been classified as

P1, the maximum, release-blocking priority for GCC defects. Our

results suggest that fixed test suites—the main way that compilers

are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part

because it generates tests that explore atypical combinations of C

language features. Atypical code is not unimportant code, how-

ever; it is simply underrepresented in fixed compiler test suites.

Developers who stray outside the well-tested paths that represent

a compiler’s “comfort zone”—for example by writing kernel code

or embedded systems code, using esoteric compiler options, or au-

tomatically generating code—can encounter bugs quite frequently.

This is a significant problem for complex systems. Wolfe [30], talk-

ing about independent software vendors (ISVs) says: “An ISV with

a complex code can work around correctness, turn off the optimizer

in one or two files, and usually they have to do that for any of the

compilers they use” (emphasis ours). As another example, the front

1

PLDI’11

“ Every compiler we tested was found to
crash and also to silently generate

wrong code when presented with valid input. ”

“ [The verified part of] CompCert is the only compiler
 we have tested for which Csmith cannot find wrong-code
 errors. This is not for lack of trying: we have devoted
 about six CPU-years to the task.”

Motivations
Bugs in compilers are not tolerated by users

Bugs can be hard to find by testing

Verified compilers must be used for verification
of source-level programs to imply guarantees at
the level of verified machine code

Research question: how easy (cheap) can we
make compiler verification?

State of the art

CompCert

Compiles C source code to assembly.

Has good performance numbers

CompCert C compiler

Leroy et al. Source: http://compcert.inria.fr/

Proved correct in Coq. http://compcert.inria.fr/

http://compcert.inria.fr/

Compiler transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
cl

o
su

re
s

a
n

d
 r

e
f

p
o
in

te
rs

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
re

f
a
n
d
 c

o
d
e
 p

o
in

te
rs

m
a
ch

in
e
 w

o
rd

s
a
n
d
 c

o
d
e
 l
a
b
e
ls

6
4

-b
it

w

o
rd

s

no modules

no cons names

no declarations

exhaustive
pat. matches

no pat. match

3
2

-b
it

w
o
rd

s

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Eliminate modules
Replace constructor
names with numbers
Reduce declarations to
exps; introduce global vars
Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets
Rephrase language

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Prepare for closure conv.

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions
Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack
Implement GC primitive
Turn stack access into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL:
functional
language
without

closures

only 1 global,
handle in call

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

Compiles CakeML concrete
syntax to machine code.

Has mostly good performance
numbers (later lecture)

Proved correct in HOL4.

CakeML compiler

Known as the first verified compiler
to be bootstrapped.

I’m one of the six developers behind
version 2 (diagram to the right).

later lecture zooms in
https://cakeml.org/

https://cakeml.org/

A spectrum

Verified compilers Proof-producing compilers

CompCert C compiler

CakeML compiler

Cogent

Translation validation for
a verified OS kernel

Pilsner

…

Fiat

CompCertTSO

proved to always
work correctly produces a proof for each run

robust, inflexible more flexible,
but can be fragile

These 4 lectures on

Verification of an ML compiler

 will focus on key concepts rather
than implementation details

Lecture 1: introduction to compiler verification

Lecture 2: data representation and garbage collection

Lecture 3: closures and call optimisations

Lecture 4: compiler bootstrapping

The lectures:

Lecture 1: introduction to compiler verification

Lecture 2: data representation and garbage collection

Lecture 3: closures and call optimisations

Lecture 4: compiler bootstrapping

The lectures:

The lectures will not cover:

Verification of parsing and ML-style type inference

Optimisations (except call optimisations in lecture 3)

Modelling and verification of I/O

How to manage a large code base of proofs

but feel free to ask

Let’s get started!
Lecture 1: introduction to compiler verification

Questions

Should we write a new compiler for the
verification?

What should we prove about it?

Do we need to use mechanised proof?

yes, because then it has
nice invariants

that the generated programs behave
“the same” as the source programs

yes

Proving a compiler correct

Ingredients:

• a formal logic for the proofs

• the source language
• the target language
• the compiler algorithm

• accurate models of

Tools:
• a proof assistant (software)

Method:
• prove simulation theorem using induction

does this correspond
with reality?

requires testing

Formal logicIngredient 1:

Formal logic

These lectures will use classical higher-order logic (HOL)

HOL = lambda calculus with simple ML-like types

Allows for quantification over functions and relations.

Functional Big-step Semantics

Scott Owens1, Magnus O. Myreen2, Ramana Kumar3, and Yong Kiam Tan4

1 School of Computing, University of Kent, UK
2 CSE Department, Chalmers University of Technology, Sweden

3 NICTA, Australia
4 IHPC, A*STAR, Singapore

Abstract. When doing an interactive proof about a piece of software,
it is important that the underlying programming language’s semantics
does not make the proof unnecessarily di�cult or unwieldy. Both small-
step and big-step semantics are commonly used, and the latter is typi-
cally given by an inductively defined relation. In this paper, we consider
an alternative: using a recursive function akin to an interpreter for the
language. The advantages include a better induction theorem, less du-
plication, accessibility to ordinary functional programmers, and the ease
of doing symbolic simulation in proofs via rewriting. We believe that
this style of semantics is well suited for compiler verification, including
proofs of divergence preservation. We do not claim the invention of this
style of semantics: our contribution here is to clarify its value, and to
explain how it supports several language features that might appear to
require a relational or small-step approach. We illustrate the technique
on a simple imperative language with C-like for-loops and a break state-
ment, and compare it to a variety of other approaches. We also provide
ML and lambda-calculus based examples to illustrate its generality.

` PERM L1 L2 () 8 x. FILTER ((=) x) L1 = FILTER ((=) x) L2

` (8 x. 9 y. P x y) () 9 f . 8 x. P x (f x)

` (8n. (8m. m < n) P m)) P n)) 8n. P n

1 Introduction

In the setting of mechanised proof about programming languages, it is often
unclear what kind of operational semantics to use for formalising the language:
common big-step and small-step approaches each have their own strengths and
weaknesses. The choice depends on the size, complexity, and nature of the pro-
gramming language, as well as what is being proved about it. As a rule-of-thumb,
the more complex the language’s features, or the more semantically intricate the
desired theorem, the more likely it is that small-step semantics will be needed.
This is because small-step semantics enable powerful proof techniques, including
syntactic preservation/progress and step-indexed logical relations, by allowing
close observation not only of the result of a program, but also how it got there.

Functional Big-step Semantics

Scott Owens1, Magnus O. Myreen2, Ramana Kumar3, and Yong Kiam Tan4

1 School of Computing, University of Kent, UK
2 CSE Department, Chalmers University of Technology, Sweden

3 NICTA, Australia
4 IHPC, A*STAR, Singapore

Abstract. When doing an interactive proof about a piece of software,
it is important that the underlying programming language’s semantics
does not make the proof unnecessarily di�cult or unwieldy. Both small-
step and big-step semantics are commonly used, and the latter is typi-
cally given by an inductively defined relation. In this paper, we consider
an alternative: using a recursive function akin to an interpreter for the
language. The advantages include a better induction theorem, less du-
plication, accessibility to ordinary functional programmers, and the ease
of doing symbolic simulation in proofs via rewriting. We believe that
this style of semantics is well suited for compiler verification, including
proofs of divergence preservation. We do not claim the invention of this
style of semantics: our contribution here is to clarify its value, and to
explain how it supports several language features that might appear to
require a relational or small-step approach. We illustrate the technique
on a simple imperative language with C-like for-loops and a break state-
ment, and compare it to a variety of other approaches. We also provide
ML and lambda-calculus based examples to illustrate its generality.

` PERM L1 L2 () 8 x. FILTER ((=) x) L1 = FILTER ((=) x) L2

` (8 x. 9 y. P x y) () 9 f . 8 x. P x (f x)

` (8n. (8m. m < n) P m)) P n)) 8n. P n

1 Introduction

In the setting of mechanised proof about programming languages, it is often
unclear what kind of operational semantics to use for formalising the language:
common big-step and small-step approaches each have their own strengths and
weaknesses. The choice depends on the size, complexity, and nature of the pro-
gramming language, as well as what is being proved about it. As a rule-of-thumb,
the more complex the language’s features, or the more semantically intricate the
desired theorem, the more likely it is that small-step semantics will be needed.
This is because small-step semantics enable powerful proof techniques, including
syntactic preservation/progress and step-indexed logical relations, by allowing
close observation not only of the result of a program, but also how it got there.

Example 2: complete induction over nat:

Example 3: definition of list permutation:

Functional Big-step Semantics

Scott Owens1, Magnus O. Myreen2, Ramana Kumar3, and Yong Kiam Tan4

1 School of Computing, University of Kent, UK
2 CSE Department, Chalmers University of Technology, Sweden

3 NICTA, Australia
4 IHPC, A*STAR, Singapore

Abstract. When doing an interactive proof about a piece of software,
it is important that the underlying programming language’s semantics
does not make the proof unnecessarily di�cult or unwieldy. Both small-
step and big-step semantics are commonly used, and the latter is typi-
cally given by an inductively defined relation. In this paper, we consider
an alternative: using a recursive function akin to an interpreter for the
language. The advantages include a better induction theorem, less du-
plication, accessibility to ordinary functional programmers, and the ease
of doing symbolic simulation in proofs via rewriting. We believe that
this style of semantics is well suited for compiler verification, including
proofs of divergence preservation. We do not claim the invention of this
style of semantics: our contribution here is to clarify its value, and to
explain how it supports several language features that might appear to
require a relational or small-step approach. We illustrate the technique
on a simple imperative language with C-like for-loops and a break state-
ment, and compare it to a variety of other approaches. We also provide
ML and lambda-calculus based examples to illustrate its generality.

` PERM L1 L2 () 8 x. FILTER ((=) x) L1 = FILTER ((=) x) L2

` (8 x. 9 y. P x y) () 9 f . 8 x. P x (f x)

` (8n. (8m. m < n) P m)) P n)) 8n. P n

1 Introduction

In the setting of mechanised proof about programming languages, it is often
unclear what kind of operational semantics to use for formalising the language:
common big-step and small-step approaches each have their own strengths and
weaknesses. The choice depends on the size, complexity, and nature of the pro-
gramming language, as well as what is being proved about it. As a rule-of-thumb,
the more complex the language’s features, or the more semantically intricate the
desired theorem, the more likely it is that small-step semantics will be needed.
This is because small-step semantics enable powerful proof techniques, including
syntactic preservation/progress and step-indexed logical relations, by allowing
close observation not only of the result of a program, but also how it got there.

Example 1: Skolem

User-definitions in HOL

Datatypes:

semantics for interactive proofs. Next, we outline how a big-step semantics can
be defined for the FOR language using conventional inductively defined relations.

Relational big-step semantics are built up from evaluation rules for an evalu-
ation relation, typically written +. Each rule states how execution of a program
expression evaluates to a result. The evaluation relation for the FOR language
takes as input a state and a statement; it then relates these inputs to the result
pair (r and new state) just as the interpreter above does.

We give a flavour of the evaluation rules next. The simplest rule in the FOR
language is evaluation of Break: evaluation always produces Rbreak and the
state s is returned unchanged. We call this rule (B).

(B)
(Break,s) +t (Rbreak,s)

The semantics of Seq is defined by two evaluation rules. We need two rules
because evaluation of t2 only happens if evaluation of t1 leads to Rval. The first
rule for Seq (S1) states: if t1 evaluates according to (t1,s) +t (Rval n1,s1) and
t2 evaluates as (t2,s1) +t r , then (Seq t1 t2,s) +t r , i.e. Seq t1 t2 evaluates
state s to result r . The second rule (S2) states that a non-Rval result in t1 is
the result for evaluation of Seq t1 t2.

(S1)

(t1,s) +t (Rval n1,s1)
(t2,s1) +t r

(Seq t1 t2,s) +t r
(S2)

(t1,s) +t (r,s1)
¬is_Rval r

(Seq t1 t2,s) +t (r,s1)

Defining these evaluation rules is straightforward, if the language is simple
enough. We include the For statement in our example language in order to show
how this conventional approach to big-step evaluation rules becomes awkward
and repetitive. The For statement’s semantics is defined by six rules. The first
rule captures the case when the loop is not executed, i.e. when the guard ex-
pression evaluates to zero. The second rule states that errors in the evaluation
of the guard are propagated.

(F1)
(e1,s) +e (Rval 0,s1)

(For e1 e2 t,s) +t (Rval 0,s1)
(F2)

(e1,s) +e (r,s1)
¬is_Rval r

(For e1 e2 t,s) +t (r,s1)

Execution of the body of the For statement is described by the following four
rules. The first of the following rules (F3) specifies the behaviour of an evaluation
where the guard e1, the body t , and the increment expression e2 each return some
Rval. The second rule (F4) defines the semantics for the case where evaluation of
the body t signals Rbreak. The third rule (F5) states that errors in the increment
expression e2 propagate. Similarly, the fourth rule (F6) states that errors that

Recursive functions (that terminate or are tail-recursive):

Inductive relations (also co-inductive relations):

starting with a C-like language with for and break statements (§2). We use it to
explain in detail how the functional approach supports the verification of a simple
compiler (§3). Then, we present a series of di↵erent languages and theorems to
illustrate the breadth of our approach (§4, §5, and §6). Lastly, we show how to
prove the equivalence of a functional big-step and small-step semantics (§7).

All of the semantics and theorems in this paper have been formalised and
proved in the HOL4 proof assistant (http://hol-theorem-prover.org). The
formalisation is available in the HOL4 examples directory (https://github.
com/HOL-Theorem-Prover/HOL/tree/master/examples/fun-op-sem); we en-
courage interested readers to consult these sources for the definitions and lemmas
that we lack the space to present here.

2 Example semantics

In this section, we motivate functional big-step semantics by defining an opera-
tional semantics for a toy language in both relational and functional styles. We
call our toy language FOR, as it includes for loops and break statements that
are familiar from C. We first define the big-step semantics of FOR, informally,
as an interpreter in Standard ML (SML); next we explain why the semantics
of FOR is di�cult to capture in a conventional big-step relation, but, using a
functional big-step semantics, can be defined neatly as a function in logic.

2.1 An interpreter in SML

The FOR language has expressions e and statements t. Like C, we allow expres-
sion evaluation to have side e↵ects (namely, assignment).

datatype t = Dec of string * t datatype e = Var string
| Exp of e | Num int
| Break | Add e e
| Seq of t * t | Assign string e

| If of e * t * t datatype r = Rval int
| For of e * e * t | Rbreak

| Rfail

We sketch the semantics for this language by defining functions that evaluate ex-
pressions and statements, run_e and run_t respectively. Each evaluation returns
an integer wrapped in Rval, signals a break Rbreak, or fails Rfail. Expression
evaluation fails on an attempt to read the value of an uninitialised variable.

fun lookup y [] = NONE
| lookup y ((x,v)::xs) = if y = x then SOME v else lookup y xs

fun run_e s (Var x) =
(case lookup x s of

NONE => (Rfail,s)

starting with a C-like language with for and break statements (§2). We use it to
explain in detail how the functional approach supports the verification of a simple
compiler (§3). Then, we present a series of di↵erent languages and theorems to
illustrate the breadth of our approach (§4, §5, and §6). Lastly, we show how to
prove the equivalence of a functional big-step and small-step semantics (§7).

All of the semantics and theorems in this paper have been formalised and
proved in the HOL4 proof assistant (http://hol-theorem-prover.org). The
formalisation is available in the HOL4 examples directory (https://github.
com/HOL-Theorem-Prover/HOL/tree/master/examples/fun-op-sem); we en-
courage interested readers to consult these sources for the definitions and lemmas
that we lack the space to present here.

2 Example semantics

In this section, we motivate functional big-step semantics by defining an opera-
tional semantics for a toy language in both relational and functional styles. We
call our toy language FOR, as it includes for loops and break statements that
are familiar from C. We first define the big-step semantics of FOR, informally,
as an interpreter in Standard ML (SML); next we explain why the semantics
of FOR is di�cult to capture in a conventional big-step relation, but, using a
functional big-step semantics, can be defined neatly as a function in logic.

2.1 An interpreter in SML

The FOR language has expressions e and statements t. Like C, we allow expres-
sion evaluation to have side e↵ects (namely, assignment).

datatype t = Dec of string * t datatype e = Var string
| Exp of e | Num int
| Break | Add e e
| Seq of t * t | Assign string e

| If of e * t * t datatype r = Rval int
| For of e * e * t | Rbreak

| Rfail

We sketch the semantics for this language by defining functions that evaluate ex-
pressions and statements, run_e and run_t respectively. Each evaluation returns
an integer wrapped in Rval, signals a break Rbreak, or fails Rfail. Expression
evaluation fails on an attempt to read the value of an uninitialised variable.

fun lookup y [] = NONE
| lookup y ((x,v)::xs) = if y = x then SOME v else lookup y xs

fun run_e s (Var x) =
(case lookup x s of

NONE => (Rfail,s)

` P x) P ((") P)

` 9 f . ONE_ONE f ^ ¬ONTO f

FILTER P [] = []
FILTER P (h::t) = if P h then h::FILTER P t else FILTER P t

PERM x () y ^ tt
� v. t
t1 t2

` PERM L1 L2 () 8 x. FILTER ((=) x) L1 = FILTER ((=) x) L2

` (8 x. 9 y. P x y) () 9 f . 8 x. P x (f x)

` (8n. (8m. m < n) P m)) P n)) 8n. P n

1 Introduction

In the setting of mechanised proof about programming languages, it is often
unclear what kind of operational semantics to use for formalising the language:
common big-step and small-step approaches each have their own strengths and
weaknesses. The choice depends on the size, complexity, and nature of the pro-
gramming language, as well as what is being proved about it. As a rule-of-thumb,
the more complex the language’s features, or the more semantically intricate the
desired theorem, the more likely it is that small-step semantics will be needed.
This is because small-step semantics enable powerful proof techniques, including
syntactic preservation/progress and step-indexed logical relations, by allowing
close observation not only of the result of a program, but also how it got there.
In contrast, big-step’s advantages arise from following the syntactic structure of
the programming language. This means that they can mesh nicely with similarly
structured compilers, type systems, etc. that one is trying to verify, and reduce
the overhead of mechanised proof.

For large projects, a hybrid approach can be adopted. The CompCert [16,17]
verified C compiler uses big-step for some parts of its semantics and small-step
for others. In the initial version of our own CakeML project [15], we had two
di↵erent semantics for the source language: big-step for the compiler verification
and small-step for the type soundness proof, with an additional proof connecting
the two semantics.

In contrast, this paper advocates functional big-step semantics, which can
support many of the proofs and languages that typically rely on a small-step
approach, but with a structure that follows the language’s syntax. A functional
big-step semantics is essentially an interpreter written in a purely functional
style and equipped with a clock to ensure that the function is total, even when
run on diverging programs. Hence the interpreter can be used in a higher-order

Language modelsIngredient 2:

Syntax
The abstract syntax is defined as a datatype.

A toy source language:

t	 =	 Dec	 string	 t	
	 	 |	 Exp	 e	
	 	 |	 Break	
	 	 |	 Seq	 t	 t	
	 	 |	 If	 e	 t	 t	
	 	 |	 For	 e	 e	 t	

e	 =	 Var	 string	
	 	 |	 Num	 int	
	 	 |	 Add	 e	 e	
	 	 |	 Assign	 string	 e

expressions can have
side-effects (c.f. ML)

For-loop

Break aborts a loop

evaluates an expression

Syntax
The abstract syntax is defined as a datatype.

A toy source language: A toy target language:

t	 =	 Dec	 string	 t	
	 	 |	 Exp	 e	
	 	 |	 Break	
	 	 |	 Seq	 t	 t	
	 	 |	 If	 e	 t	 t	
	 	 |	 For	 e	 e	 t	

e	 =	 Var	 string	
	 	 |	 Num	 int	
	 	 |	 Add	 e	 e	
	 	 |	 Assign	 string	 e

inst	 	
	 	 =	 Add	 reg	 reg	 reg	
	 	 |	 Int	 reg	 int	
	 	 |	 Jmp	 offset	
	 	 |	 JmpIf	 reg	 offset

an assembly program is a
list of instructions

Operational Semantics — the options

There are 4 main variants one can choose from.

relational functional

small-step

big-step

1 2

3 4

used for
concurrency

most common
for compiler

proofs

CakeML uses this style

requires defining:
inductive rel. for terminating behaviours;
co-inductive rel. for diverging behaviours.

avoids treating diverging
behaviours separately

common in ACL2

Towards a functional big-step semantics (1)

an integer wrapped in Rval, signals a break Rbreak, or fails Rfail. Expression
evaluation fails on an attempt to read the value of an uninitialised variable.

fun lookup y [] = NONE
| lookup y ((x,v)::xs) = if y = x then SOME v else lookup y xs

fun run_e s (Var x) =
(case lookup x s of

NONE => (Rfail,s)
| SOME v => (Rval v,s))

| run_e s (Num i) = (Rval i,s)
| run_e s (Assign (x, e)) =

(case run_e s e of
(Rval n1, s1) => (Rval n1, (x,n1)::s1)

| r => r)
| run_e s (Add (e1, e2)) = ...

Below, evaluation of a Break statement returns Rbreak, which is propagated to
the enclosing For loop. A For loop returns a normal Rval result if the body of
the loop returns Rbreak.

fun run_t s (Exp e) = run_e s e
| run_t s (Dec (x, t)) = run_t ((x,0)::s) t
| run_t s Break = (Rbreak, s)
| run_t s (Seq (t1, t2)) =

(case run_t s t1 of
(Rval _, s1) => run_t s1 t2

| r => r)
| run_t s (If (e, t1, t2)) =

(case run_e s e of
(Rval n1, s1) => run_t s1 (if n1 = 0 then t2 else t1)

| r => r)
| run_t s (For (e1, e2, t)) =

(case run_e s e1 of
(Rval n1, s1) =>
if n1 = 0 then (Rval 0, s1) else
(case run_t s1 t of

(Rval _, s2) =>
(case run_e s2 e2 of

(Rval _, s3) => run_t s3 (For (e1, e2, t))
| r => r)

| (Rbreak, s2) => (Rval 0, s2)
| r => r)

| r => r)

These SML functions make use of catch-all patterns in case-expressions in order
to conveniently propagate non-Rval results. We use the same approach in our
functional semantics (§2.3) to keep them concise. The case expressions above are
idiomatic for SML, but in a language with syntactic support for monadic com-
putations, such as Haskell with do-notation, one would package the propagation
of exceptional results inside a monadic bind operator.

We define an interpreter for the source in Standard ML:

expression evaluation returns Rval or Rfail and new state

state is an a-liststate is a simple assoc-list

assignments update the state

Towards a functional big-step semantics (2)

… and the evaluation of statements (type t):

an integer wrapped in Rval, signals a break Rbreak, or fails Rfail. Expression
evaluation fails on an attempt to read the value of an uninitialised variable.

fun lookup y [] = NONE
| lookup y ((x,v)::xs) = if y = x then SOME v else lookup y xs

fun run_e s (Var x) =
(case lookup x s of

NONE => (Rfail,s)
| SOME v => (Rval v,s))

| run_e s (Num i) = (Rval i,s)
| run_e s (Assign (x, e)) =

(case run_e s e of
(Rval n1, s1) => (Rval n1, (x,n1)::s1)

| r => r)
| run_e s (Add (e1, e2)) = ...

Below, evaluation of a Break statement returns Rbreak, which is propagated to
the enclosing For loop. A For loop returns a normal Rval result if the body of
the loop returns Rbreak.

fun run_t s (Exp e) = run_e s e
| run_t s (Dec (x, t)) = run_t ((x,0)::s) t
| run_t s Break = (Rbreak, s)
| run_t s (Seq (t1, t2)) =

(case run_t s t1 of
(Rval _, s1) => run_t s1 t2

| r => r)
| run_t s (If (e, t1, t2)) =

(case run_e s e of
(Rval n1, s1) => run_t s1 (if n1 = 0 then t2 else t1)

| r => r)
| run_t s (For (e1, e2, t)) =

(case run_e s e1 of
(Rval n1, s1) =>
if n1 = 0 then (Rval 0, s1) else
(case run_t s1 t of

(Rval _, s2) =>
(case run_e s2 e2 of

(Rval _, s3) => run_t s3 (For (e1, e2, t))
| r => r)

| (Rbreak, s2) => (Rval 0, s2)
| r => r)

| r => r)

These SML functions make use of catch-all patterns in case-expressions in order
to conveniently propagate non-Rval results. We use the same approach in our
functional semantics (§2.3) to keep them concise. The case expressions above are
idiomatic for SML, but in a language with syntactic support for monadic com-
putations, such as Haskell with do-notation, one would package the propagation
of exceptional results inside a monadic bind operator.

Break causes an Rbreak

Rbreak skips Seq-code

Towards a functional big-step semantics (3)

… so far everything we wrote in ML could be defined in HOL.

an integer wrapped in Rval, signals a break Rbreak, or fails Rfail. Expression
evaluation fails on an attempt to read the value of an uninitialised variable.

fun lookup y [] = NONE
| lookup y ((x,v)::xs) = if y = x then SOME v else lookup y xs

fun run_e s (Var x) =
(case lookup x s of

NONE => (Rfail,s)
| SOME v => (Rval v,s))

| run_e s (Num i) = (Rval i,s)
| run_e s (Assign (x, e)) =

(case run_e s e of
(Rval n1, s1) => (Rval n1, (x,n1)::s1)

| r => r)
| run_e s (Add (e1, e2)) = ...

Below, evaluation of a Break statement returns Rbreak, which is propagated to
the enclosing For loop. A For loop returns a normal Rval result if the body of
the loop returns Rbreak.

fun run_t s (Exp e) = run_e s e
| run_t s (Dec (x, t)) = run_t ((x,0)::s) t
| run_t s Break = (Rbreak, s)
| run_t s (Seq (t1, t2)) =

(case run_t s t1 of
(Rval _, s1) => run_t s1 t2

| r => r)
| run_t s (If (e, t1, t2)) =

(case run_e s e of
(Rval n1, s1) => run_t s1 (if n1 = 0 then t2 else t1)

| r => r)
| run_t s (For (e1, e2, t)) =

(case run_e s e1 of
(Rval n1, s1) =>
if n1 = 0 then (Rval 0, s1) else
(case run_t s1 t of

(Rval _, s2) =>
(case run_e s2 e2 of

(Rval _, s3) => run_t s3 (For (e1, e2, t))
| r => r)

| (Rbreak, s2) => (Rval 0, s2)
| r => r)

| r => r)

These SML functions make use of catch-all patterns in case-expressions in order
to conveniently propagate non-Rval results. We use the same approach in our
functional semantics (§2.3) to keep them concise. The case expressions above are
idiomatic for SML, but in a language with syntactic support for monadic com-
putations, such as Haskell with do-notation, one would package the propagation
of exceptional results inside a monadic bind operator.

… but now this recursive call
introduces potential

non-termination

Why is non-terimination an issue?

Suppose HOL allowed definitions of
non-terminating functions, e.g.

f n = f n + 1

then f n - f n = f n + 1 - f n

and 0 = 1

Towards a functional big-step semantics (4)

We can force our functions to terminate by inserting a clock.

the first sub-statement returns a value, using the +t relation, and the second
sub-statement diverges. Notice the duplication between the definitions of +t and
*t: both must allow the evaluation to progress normally up to a particular sub-
statement, and then +t requires it to terminate, while *t requires it to diverge.
This corresponds to the duplication internal to +t for propagating Rbreak and
other exceptional results.

(S10)
*t s t1

*t s (Seq t1 t2)
(S20)

+t s t1 (Rval n1,s1)
*t s1 t2

*t s (Seq t1 t2)

(F10)

+e s e1 (Rval n1,s1)
n1 6= 0
*t s1 t

*t s (For e1 e2 t)
(F20)

+e s e1 (Rval n1, s1)
n1 6= 0

+t s1 t (Rval n2, s2)
+e s2 e2 (Rval n3,s3)
*t s3 (For e1 e2 t)

*t s (For e1 e2 t)

2.3 Functional big-step semantics

The interpreter written in SML, given in §2.1, avoids the irritating duplication
of the conventional big-step semantics. It is also arguably easier to read and
clearly gives some semantics to all cases. So why can we not just take the SML
code and define it as a function in logic? The answer is that the SML code does
not terminate for all inputs, e.g., run_t [] (For (Num 1, Num 1, Exp (Num 1))).

In order to define run_t as a function in logic, we need to make it total
somehow. A technique for doing this is to add a clock to the function: on each
recursive call for which termination is non-obvious, one adds a clock decrement.
The clock is a natural number, so when it hits zero, execution is aborted with a
special time-out signal.

A very simple implementation of the clocked-function solution is to add a
check-and-decrement on every recursive call. The termination proof becomes
trivial, but the function is cluttered with the clock mechanism.

Instead of inserting the clock on every recursive call, we suggest that the clock
should only be decremented on recursive function calls for which the currently
evaluated expressions does not decrease in size. For the FOR language, this
means adding a clock-check-and-decrement only on the looping call in the For
case. In the SML code, this recursive call is performed here:

| run_t s (For (e1, e2, t)) =
...

(Rval _, s3) => run_t s3 (For (e1, e2, t))

In our functional big-step semantics for the FOR language, called sem_t, we
write the line above as follows. Here dec_clock decrements the clock that is
stored in the state.

ML:

HOL: eval_t s (For e1 e2 t) =
...

(Rval _,s3))
if s3.clock 6= 0 then

eval_t (dec_clock s3) (For e1 e2 t)
else (Rtimeout,s3)

All other parts of the SML code are directly translated from SML into HOL4’s
logic. The complete definition of sem_t is given below. Because run_e is a pure
total function, it can be translated directly into the HOL4 logic as sem_e without
adding a clock. Here store_var x 0 s is state s updated to have value 0 in
variable x .

sem_t s (Exp e) = sem_e s e
sem_t s (Dec x t) = sem_t (store_var x 0 s) t
sem_t s Break = (Rbreak,s)
sem_t s (Seq t1 t2) =
case sem_t s t1 of

(Rval _,s1)) sem_t s1 t2
| r) r
sem_t s (If e t1 t2) =
case sem_e s e of

(Rval n1,s1)) sem_t s1 (if n1 = 0 then t2 else t1)
| r) r
sem_t s (For e1 e2 t) =
case sem_e s e1 of

(Rval 0,s1)) (Rval 0,s1)
| (Rval _,s1))

(case sem_t s1 t of

(Rval _,s2))
(case sem_e s2 e2 of

(Rval _,s3))
if s3.clock 6= 0 then

sem_t (dec_clock s3) (For e1 e2 t)
else (Rtimeout,s3)

| r) r)
| (Rbreak,s2)) (Rval 0,s2)
| r) r)

| r) r

Note that, in our logic version of the semantics, we have introduced a new
kind of return value called Rtimeout. This return value is used only to signal
that the clock has aborted evaluation. It always propagates to the top, and can
be used for reasoning about divergence preservation (§3.3).

Termination proof We prove termination of sem_t by providing a well-founded
measure: the lexicographic ordering on the clock value and the size of the state-
ment that is being evaluated. This measure works because the value of the clock

in HOL, the state is a record
containing a clock

if it hits zero, then we abort with an uncatchable exception

which gets decremented

24. T. Rompf and N. Amin. From F to DOT: type soundness proofs with definitional
interpreters. CoRR, abs/1510.05216, 2015. URL: http://arxiv.org/abs/1510.
05216.

25. J. Siek. Big-step, diverging or stuck? http://siek.blogspot.com/2012/07/
big-step-diverging-or-stuck.html, 2012.

26. J. Siek. Type safety in three easy lemmas. http://siek.blogspot.com/2013/05/
type-safety-in-three-easy-lemmas.html, 2013.

27. M. Tofte. Type inference for polymorphic references. Inf. Comput., 89(1):1–34,
1990. doi:10.1016/0890-5401(90)90018-D.

28. P. Tollitte, D. Delahaye, and C. Dubois. Producing certified functional code
from inductive specifications. In Certified Programs and Proofs - Second Inter-
national Conference, CPP 2012. Proceedings, pages 76–91, 2012. doi:10.1007/
978-3-642-35308-6_9.

29. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf.
Comput., 115(1):38–94, 1994. doi:10.1006/inco.1994.1093.

30. W. D. Young. A mechanically verified code generator. J. Autom. Reasoning,
5(4):493–518, 1989. doi:10.1007/BF00243134.

eval_t s (Exp e) = eval_e s e
eval_t s (Dec x t) = eval_t (store_var x 0 s) t
eval_t s Break = (Rbreak,s)
eval_t s (Seq t1 t2) =

case eval_t s t1 of

(Rval _,s1)) eval_t s1 t2
| r) r

eval_t s (If e t1 t2) =
case eval_e s e of

(Rval n1,s1)) eval_t s1 (if n1 = 0 then t2 else t1)
| r) r

eval_t s (For e1 e2 t) =
case eval_e s e1 of

(Rval 0,s1)) (Rval 0,s1)
| (Rval _,s1))

(case eval_t s1 t of

(Rval _,s2))
(case eval_e s2 e2 of

(Rval _,s3))
if s3.clock 6= 0 then

eval_t (dec_clock s3) (For e1 e2 t)
else (Rtimeout,s3)

| r) r)
| (Rbreak,s2)) (Rval 0,s2)
| r) r)

| r) r

Functional big-step semantics

Other parts do not require clock clutter:

HOL:
… since the size of
the input shrinks

… since the size of
the input shrinks

Observational semantics

Compiler proof is to relate different observational semantics.

is never increased, and, on every recursive call where the clock is not decre-
mented, the size of the statement that is being evaluated decreases.3

No termination proof is required for relational big-step semantics. This re-
quirement is, therefore, a drawback for the functional version. However, the func-
tional representation brings some immediate benefits that are not immediate for
relational definitions. The functional representation means that the semantics
is total (by definition) and that the semantics is deterministic (see §4 for an
account of non-deterministic languages). These are properties that can require
tedious proof for relational definitions.

Semantics of terminating and non-terminating evaluations The sem_t function
terminates for all inputs. However, at the same time, it gives semantics to both
terminating and non-terminating (diverging) evaluations. We say that evaluation
terminates, if there exists some initial value of the clock for which the sem_t
returns Rval. An evaluation is non-terminating if sem_t returns Rtimeout for
all initial values of the clock. In all other cases, the semantics fails. The top-level
semantics is defined formally as follows. There are three observable outcomes:
Terminate, Diverge, and Crash.

semantics t =
if 9 c v s. sem_t (s_with_clock c) t = (Rval v,s) then Terminate
else if 8 c. 9 s. sem_t (s_with_clock c) t = (Rtimeout,s) then Diverge
else Crash

§3.3 verifies a compiler that preserves this semantics, and §4 extends the FOR
language with input, output, and internal non-determinism.

3 Using functional semantics

The previous section showed how big-step semantics can be defined as functions
in logic, and how they avoid the duplication that occurs in conventional big-
step semantics. In this section, we highlight how the change in style of definition
a↵ects proofs that use the semantics. We compare proofs based on the functional
semantics with corresponding proofs based on the relational semantics.

3.1 Rewriting with the semantics

Since the functional semantics is defined as a function, it can be used for evalua-
tion in the logic and used directly for proofs by rewriting. As a simple example,
we can easily show that the Dec statement is an abbreviation for a longer pro-
gram. This proof is just a simple call to the automatic rewriter in HOL4.

` sem_t s (Dec v t) = sem_t s (Seq (Exp (Assign v (Num 0))) t)

3 HOL4’s current definition package requires some help to prove and use the fact that
the clock never increases.

Without I/O, programs can only Terminate, Diverge or Crash.

terminates if there is a clock that is sufficient

diverges if all clocks cause timeouts

crashes otherwise, e.g. when Rbreak propagates to the top

Exercise
Define a functional big-step semantics in your
favourite prover (e.g. HOL4, Isabelle/HOL, Coq, ACL2)

There is a trick to the
termination proof. Ask me!

Ingredient 3: Compiler function

Compiler function

Three phases:

phase 1: rewrite For to something simpler

phase 2: split expressions into instructions

phase 3: flatten to list of assembly instructions

Ingredient 3:

24. T. Rompf and N. Amin. From F to DOT: type soundness proofs with definitional
interpreters. CoRR, abs/1510.05216, 2015. URL: http://arxiv.org/abs/1510.
05216.

25. J. Siek. Big-step, diverging or stuck? http://siek.blogspot.com/2012/07/
big-step-diverging-or-stuck.html, 2012.

26. J. Siek. Type safety in three easy lemmas. http://siek.blogspot.com/2013/05/
type-safety-in-three-easy-lemmas.html, 2013.

27. M. Tofte. Type inference for polymorphic references. Inf. Comput., 89(1):1–34,
1990. doi:10.1016/0890-5401(90)90018-D.

28. P. Tollitte, D. Delahaye, and C. Dubois. Producing certified functional code
from inductive specifications. In Certified Programs and Proofs - Second Inter-
national Conference, CPP 2012. Proceedings, pages 76–91, 2012. doi:10.1007/
978-3-642-35308-6_9.

29. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf.
Comput., 115(1):38–94, 1994. doi:10.1006/inco.1994.1093.

30. W. D. Young. A mechanically verified code generator. J. Autom. Reasoning,
5(4):493–518, 1989. doi:10.1007/BF00243134.

eval_t s (Exp e) = eval_e s e
eval_t s (Dec x t) = eval_t (store_var x 0 s) t
eval_t s Break = (Rbreak,s)
eval_t s (Seq t1 t2) =

case eval_t s t1 of

(Rval _,s1)) eval_t s1 t2
| r) r

eval_t s (If e t1 t2) =
case eval_e s e of

(Rval n1,s1)) eval_t s1 (if n1 = 0 then t2 else t1)
| r) r

eval_t s (For e1 e2 t) =
case eval_e s e1 of

(Rval 0,s1)) (Rval 0,s1)
| (Rval _,s1))

(case eval_t s1 t of

(Rval _,s2))
(case eval_e s2 e2 of

(Rval _,s3))
if s3.clock 6= 0 then

eval_t (dec_clock s3) (For e1 e2 t)
else (Rtimeout,s3)

| r) r)
| (Rbreak,s2)) (Rval 0,s2)
| r) r)

| r) r

phase1 (Exp e) = Exp e
phase1 (Dec x t) = Seq (Exp (Assign x (Num 0))) (phase1 t)
phase1 Break = Break
phase1 (Seq t1 t2) = Seq (phase1 t1) (phase1 t2)
phase1 (If e t1 t2) = If e (phase1 t1) (phase1 t2)
phase1 (For e1 e2 t) = Loop (If e1 (Seq (phase1 t) (Exp e2)) Break)

Compiler function

Three phases:

phase 1: rewrite For to something simpler

where

(e1,s) +e (r1,s1) ^
(if (r1 = Rval n1) ^ n1 6= 0 then

(t,s1) +t (r2,s2) ^
if r2 = Rval n2 then

(e2,s2) +e (r3,s3) ^
if r3 = Rval n3 then (For e1 e2 t,s3) +t result
else result = (r3,s3)

else result = (r2,s2)
else (result = (r1,s1)))

(For e1 e2 t,s) +t result

By avoiding the duplication in the rules, the induction theorem also avoids the
duplication. Writing packaged rules, as shown above, is unusual and certainly not
aesthetically pleasing. However, if relational definitions are to be used, packaging
evaluation rules as above is potentially less intrusive to proofs than use of the
pretty-big-step approach, since it does not introduce new data constructors.4

3.3 Example compiler verification

Next, we outline how functional big-step semantics support compiler verification,
proving that a compiler preserves the observable behaviour. Our compiler targets
a simple assembly-like language, where the code is a list of instructions (instr).

for_compile$instr =
Add for_compile$reg for_compile$reg for_compile$reg

| Int for_compile$reg int
| Jmp num
| JmpIf for_compile$reg num

The compiler, compile, is a composition of three phases. The first
phase, phase1, simplifies For and Dec; phase2 splits assignments into simple
instruction-like assignments, but stays within the source language; and phase3
reduces the remaining subset of the source language into a list of target instruc-
tions. The first two parameters to phase3 accumulate code location information.

compile t = phase3 0 0 (phase2 (phase1 t))

The first phase is a source-to-source transformation that simplifies For and
Dec as follows. Here Loop is an abbreviation: Loop t = For (Num 1) (Num 1) t .

phase1 (For g e t) = Loop (If g (Seq (phase1 t) (Exp e)) Break)
phase1 (Dec x t) = Seq (Exp (Assign x (Num 0))) (phase1 t)

The compilation function phase1 has a simple correctness theorem that can
be proved in less than 20 lines of HOL4 script using the induction from Fig. 1.

4 Note that such packaged big-step rules are easy to define in HOL4. However,
they do not fit well with Coq’s default mechanism for defining inductive relations.
Charguéraud’s pretty-big-step approach was developed in the context of Coq.

Makes all loops simple while-true loops.

Ingredient 3:

Proving a compiler correct

Ingredients:

• a formal logic for the proofs

• the source language
• the target language
• the compiler algorithm

• accurate models of

Tools:
• a proof assistant (software)

Method:
• prove simulation theorem using induction

Induction theorem` 8P.
(8 s e. P s (Exp e)) ^
(8 s x t. P (store_var x 0 s) t) P s (Dec x t)) ^
(8 s. P s Break) ^
(8 s t1 t2.

(8 v2 s1 v5.
(eval_t s t1 = (v2,s1)) ^ (v2 = Rval v5)) P s1 t2) ^

P s t1)
P s (Seq t1 t2)) ^

(8 s e t1 t2.
(8 v2 s1 n1.

(eval_e s e = (v2,s1)) ^ (v2 = Rval n1))
P s1 (if n1 = 0 then t2 else t1)))

P s (If e t1 t2)) ^
(8 s e1 e2 t.

(8 v4 s1 n1 v3 s2 v7 v2 s3 v5.
(eval_e s e1 = (v4,s1)) ^ (v4 = Rval n1) ^ n1 6= 0 ^
(eval_t s1 t = (v3,s2)) ^ (v3 = Rval v7) ^
(eval_e s2 e2 = (v2,s3)) ^ (v2 = Rval v5) ^ s3.clock 6= 0)
P (dec_clock s3) (For e1 e2 t)) ^

(8 v4 s1 n1.
(eval_e s e1 = (v4,s1)) ^ (v4 = Rval n1) ^ n1 6= 0)
P s1 t))

P s (For e1 e2 t)))
8 v v1. P v v1

Fig. 1. Induction theorem for functional big-step semantics.

` 8P.
. . . ^ . . . ^ . . . ^ . . . ^ . . . ^ . . . ^ . . . ^ . . . ^
(8 s s1 e1 e2 t.

(e1,s) +e (Rval 0,s1)) P (For e1 e2 t,s) (Rval 0,s1)) ^
(8 s s1 e1 e2 t r.

(e1,s) +e (r,s1) ^ ¬is_Rval r) P (For e1 e2 t,s) (r,s1)) ^
(8 s s1 s2 s3 e1 e2 t n1 n2 n3 r.

(e1,s) +e (Rval n1,s1) ^ n1 6= 0 ^
P (t,s1) (Rval n2,s2) ^ (e2,s2) +e (Rval n3,s3) ^
P (For e1 e2 t,s3) r)
P (For e1 e2 t,s) r) ^

(8 s s1 s2 e1 e2 t n1.
(e1,s) +e (Rval n1,s1) ^ n1 6= 0 ^ P (t,s1) (Rbreak,s2))
P (For e1 e2 t,s) (Rval 0,s2)) ^

(8 s s1 s2 s3 e1 e2 t n1 n2 r.
(e1,s) +e (Rval n1,s1) ^ n1 6= 0 ^
P (t,s1) (Rval n2,s2) ^ (e2,s2) +e (r,s3) ^ ¬is_Rval r)
P (For e1 e2 t,s) (r,s3)) ^

(8 s s1 s2 e1 e2 t n1 r.
(e1,s) +e (Rval n1,s1) ^ n1 6= 0 ^ P (t,s1) (r,s2) ^
¬is_Rval r ^ r 6= Rbreak)
P (For e1 e2 t,s) (r,s2)))

8 ts rs. ts +t rs) P ts rs

Fig. 2. Induction theorem for relational big-step semantics. Parts omitted with ‘. . . ’.

Has structure of functional
big-step interpreter.

One case for each program
construct.

Simulation proof

Particularly simple for phase 1:

Requires only 8 lines of HOL4 proof script (mostly rewriting).

` 8 s t. eval_t s (phase1 t) = eval_t s t

We also prove that phase1 preserves the observable semantics:

` 8 t. semantics (phase1 t) = semantics t

Subsequent phases assume that For statements have been simplified to Loop.
The verification of the second phase, phase2, is almost as simple but a little
longer because phase2 invents variable names to hold temporary results.

The third phase compiles the resulting subset of the FOR language into a list
of instructions in the assembly-like target language. The crucial lemma, stated
below, was proved by induction using the theorem shown in Fig. 1. This lemma’s
statement can informally be read as: if the source semantics eval_t dictates
that program t successfully evaluates state s1 to state s2, the source program t
is within the allowed syntactic subset, and the compiled code for t is installed in
a store-related target state x ; then the target semantics eval_a evaluates x to a
new target state x 0 that is store-related to s2. Below, eval_a is the functional big-
step semantics for the target assembly language. The eval_a function executes
one instruction at a time and is tail-recursive; its lengthy definition is omitted.
phase3_subset defines the syntactic restrictions that programs must follow after
phases 1 and 2. The ellipses elide several detailed parts of the conclusion that
are only necessary to make the induction go through: in particular, where the
program counter will point at exit based on the result res.

` 8 s1 t res s2 x xs ys b.
(eval_t s1 t = (res,s2)) ^ phase3_subset t ^ (x.store = s1) ^
(x.pc = length xs) ^
(x.instrs = xs ++ phase3 (length xs) b t ++ ys) ^ res 6= Rfail ^
((res = Rbreak)) length (xs ++ phase3 (length xs) b t) b))
9 x 0. (eval_a x = eval_a x 0) ^ (x 0.store = s2) ^ . . .

` 8 s e t n res s1.
(eval_t s e = (res,s1)) ^ res 6= Rfail ^ phase2_subset e ^
possible_var_name n s.store ^ s.store v t.store ^
(t.clock = s.clock) ^ t_max e < strlen n)
9 t1.
(eval_t t (flatten_t e n) = (res,t1)) ^
s1.store v t1.store ^ (t1.clock = s1.clock) ^
possible_var_name n s1.store ^
8 k v.

possible_var_name k s.store ^ t_max e < strlen k ^
strlen k < strlen n ^ (lookup t.store k = SOME v))
(lookup t1.store k = SOME v)

We can lift this to the observational semantics
with a one-line proof by rewriting:

` 8 s t. eval_t s (phase1 t) = eval_t s t

We also prove that phase1 preserves the observable semantics:

` 8 t. semantics (phase1 t) = semantics t

Subsequent phases assume that For statements have been simplified to Loop.
The verification of the second phase, phase2, is almost as simple but a little
longer because phase2 invents variable names to hold temporary results.

The third phase compiles the resulting subset of the FOR language into a list
of instructions in the assembly-like target language. The crucial lemma, stated
below, was proved by induction using the theorem shown in Fig. 1. This lemma’s
statement can informally be read as: if the source semantics eval_t dictates
that program t successfully evaluates state s1 to state s2, the source program t
is within the allowed syntactic subset, and the compiled code for t is installed in
a store-related target state x ; then the target semantics eval_a evaluates x to a
new target state x 0 that is store-related to s2. Below, eval_a is the functional big-
step semantics for the target assembly language. The eval_a function executes
one instruction at a time and is tail-recursive; its lengthy definition is omitted.
phase3_subset defines the syntactic restrictions that programs must follow after
phases 1 and 2. The ellipses elide several detailed parts of the conclusion that
are only necessary to make the induction go through: in particular, where the
program counter will point at exit based on the result res.

` 8 s1 t res s2 x xs ys b.
(eval_t s1 t = (res,s2)) ^ phase3_subset t ^ (x.store = s1) ^
(x.pc = length xs) ^
(x.instrs = xs ++ phase3 (length xs) b t ++ ys) ^ res 6= Rfail ^
((res = Rbreak)) length (xs ++ phase3 (length xs) b t) b))
9 x 0. (eval_a x = eval_a x 0) ^ (x 0.store = s2) ^ . . .

` 8 s e t n res s1.
(eval_t s e = (res,s1)) ^ res 6= Rfail ^ phase2_subset e ^
possible_var_name n s.store ^ s.store v t.store ^
(t.clock = s.clock) ^ t_max e < strlen n)
9 t1.
(eval_t t (flatten_t e n) = (res,t1)) ^
s1.store v t1.store ^ (t1.clock = s1.clock) ^
possible_var_name n s1.store ^
8 k v.

possible_var_name k s.store ^ t_max e < strlen k ^
strlen k < strlen n ^ (lookup t.store k = SOME v))
(lookup t1.store k = SOME v)

Simulation theorems in general

Usually, each compile phase requires a theorem
of the form:

evaluate	 code	 s1	 =	 (res,s2)	 ∧	 res	 ≠	 Rfail	 ∧	
state_rel	 s1	 t1	 ⇒	
∃t2.	 evaluate	 (compile	 code)	 t1	 =	 (res,t2)	 ∧	 	
	 	 	 	 	 state_rel	 s2	 t2	

non-failing evaluation of source intermediate language (IL)

implies

… w.r.t. some relation between states (state_rel)… w.r.t. some relation between states (state_rel)

similar evaluation in target IL

Simulation theorems in general

Usually, each compile phase requires a theorem
of the form:

evaluate	 code	 s1	 =	 (res,s2)	 ∧	 res	 ≠	 Rfail	 ∧	
state_rel	 s1	 t1	 ⇒	
∃t2.	 evaluate	 (compile	 code)	 t1	 =	 (res,t2)	 ∧	 	
	 	 	 	 	 state_rel	 s2	 t2	

usually: state_rel keeps clocks in sync

variant: target can consume more clock ticks

Simulation theorems in general

Usually, each compile phase requires a theorem
of the form:

evaluate	 code	 s1	 =	 (res,s2)	 ∧	 res	 ≠	 Rfail	 ∧	
state_rel	 s1	 t1	 ⇒	
∃t2.	 evaluate	 (compile	 code)	 t1	 =	 (res,t2)	 ∧	 	
	 	 	 	 	 state_rel	 s2	 t2	

Sufficient to prove observational equivalence for
both terminating and diverging runs.

Phase 2 simulation theorem

` 8 s t. eval_t s (phase1 t) = eval_t s t

We also prove that phase1 preserves the observable semantics:

` 8 t. semantics (phase1 t) = semantics t

Subsequent phases assume that For statements have been simplified to Loop.
The verification of the second phase, phase2, is almost as simple but a little
longer because phase2 invents variable names to hold temporary results.

The third phase compiles the resulting subset of the FOR language into a list
of instructions in the assembly-like target language. The crucial lemma, stated
below, was proved by induction using the theorem shown in Fig. 1. This lemma’s
statement can informally be read as: if the source semantics eval_t dictates
that program t successfully evaluates state s1 to state s2, the source program t
is within the allowed syntactic subset, and the compiled code for t is installed in
a store-related target state x ; then the target semantics eval_a evaluates x to a
new target state x 0 that is store-related to s2. Below, eval_a is the functional big-
step semantics for the target assembly language. The eval_a function executes
one instruction at a time and is tail-recursive; its lengthy definition is omitted.
phase3_subset defines the syntactic restrictions that programs must follow after
phases 1 and 2. The ellipses elide several detailed parts of the conclusion that
are only necessary to make the induction go through: in particular, where the
program counter will point at exit based on the result res.

` 8 s1 t res s2 x xs ys b.
(eval_t s1 t = (res,s2)) ^ phase3_subset t ^ (x.store = s1) ^
(x.pc = length xs) ^
(x.instrs = xs ++ phase3 (length xs) b t ++ ys) ^ res 6= Rfail ^
((res = Rbreak)) length (xs ++ phase3 (length xs) b t) b))
9 x 0. (eval_a x = eval_a x 0) ^ (x 0.store = s2) ^ . . .

` 8 s e t n res s1.
(eval_t s e = (res,s1)) ^ res 6= Rfail ^ phase2_subset e ^
possible_var_name n s.store ^ s.store v t.store ^
(t.clock = s.clock) ^ t_max e < strlen n)
9 t1.
(eval_t t (flatten_t e n) = (res,t1)) ^
s1.store v t1.store ^ (t1.clock = s1.clock) ^
possible_var_name n s1.store ^
8 k v.

possible_var_name k s.store ^ t_max e < strlen k ^
strlen k < strlen n ^ (lookup t.store k = SOME v))
(lookup t1.store k = SOME v)

source IL

target IL compiler

state_relstate relation

extra property

restrict language syntax
following phase 1not failing

Composing top-level theorems

semantics (phase1 t) = semantics t

semantics t 6= Crash ^ phase2_subset t)
(semantics (phase2 t) = semantics t)

semantics t 6= Crash ^ phase3_subset t)
(asm_semantics (phase3 0 0 t) = semantics t)

Each phase maintains observational equivalence:

observational semantics of target assembly

Here:

semantics (phase1 t) = semantics t

semantics t 6= Crash ^ phase2_subset t)
(semantics (phase2 t) = semantics t)

semantics t 6= Crash ^ phase3_subset t)
(asm_semantics (phase3 0 0 t) = semantics t)

compile t = phase3 0 0 (phase2 (phase1 t))

Composing top-level theorems

Result:

` 8 s t. sem_t s (phase1 t) = sem_t s t

We also prove that phase1 preserves the observable semantics:

` 8 t. semantics (phase1 t) = semantics t

Subsequent phases assume that For statements have been simplified to Loop.
The verification of the second phase, phase2, is almost as simple but a little
longer because phase2 invents variable names to hold temporary results.

The third phase compiles the resulting subset of the FOR language into a list
of instructions in the assembly-like target language. The crucial lemma, stated
below, was proved by induction using the theorem shown in Fig. 1. This lemma’s
statement can informally be read as: if the source semantics sem_t dictates that
program t successfully evaluates state s1 to state s2, the source program t is
within the allowed syntactic subset, and the compiled code for t is installed in
a store-related target state x ; then the target semantics sem_a evaluates x to a
new target state x 0 that is store-related to s2. Below, sem_a is the functional big-
step semantics for the target assembly language. The sem_a function executes
one instruction at a time and is tail-recursive; its lengthy definition is omitted.
phase3_subset defines the syntactic restrictions that programs must follow after
phases 1 and 2. The ellipses elide several detailed parts of the conclusion that
are only necessary to make the induction go through: in particular, where the
program counter will point at exit based on the result res.

` 8 s1 t res s2 x xs ys b.
(sem_t s1 t = (res,s2)) ^ phase3_subset t ^ (x.store = s1) ^
(x.pc = LENGTH xs) ^
(x.instrs = xs ++ phase3 (LENGTH xs) b t ++ ys) ^ res 6= Rfail ^
((res = Rbreak)) LENGTH (xs ++ phase3 (LENGTH xs) b t) b))
9 x 0. (sem_a x = sem_a x 0) ^ (x 0.store = s2) ^ . . .

From the lemma above, it is easy to prove that phase3 0 0 t preserves the
observable semantics, if t is in the subset expected by the third phase and t does
not Crash in the source semantics.

` 8 t.
semantics t 6= Crash ^ phase3_subset t)
(asm_semantics (phase3 0 0 t) = semantics t)

Here asm_semantics is the observable semantics of the target assembly language.

asm_semantics code =
if 9 c s. sem_a (a_state code c) = (Rval 0,s) then Terminate
else if 8 c. 9 s. sem_a (a_state code c) = (Rtimeout,s) then Diverge
else Crash

The following top-level compiler correctness theorem is produced by combin-
ing the semantics preservation theorems from all three phases. The assumption
that the source semantics does not Crash is implied by a simple syntactic check
syntax_ok, which checks that all variables been declared (Dec) and that all
Break statements are contained within For loops.

` 8 t. syntax_ok t) (asm_semantics (compile t) = semantics t)

where

lemma: correct syntax implies no Crashes

for ML: type-correct program implies no Crash

semantics (phase1 t) = semantics t

semantics t 6= Crash ^ phase2_subset t)
(semantics (phase2 t) = semantics t)

semantics t 6= Crash ^ phase3_subset t)
(asm_semantics (phase3 0 0 t) = semantics t)

compile t = phase3 0 0 (phase2 (phase1 t))

What we learnt

Ingredients: formal logic, compiler, language semantics
Tools: proof assistant

in order to prove observational equivalence, i.e.

` 8 s t. sem_t s (phase1 t) = sem_t s t

We also prove that phase1 preserves the observable semantics:

` 8 t. semantics (phase1 t) = semantics t

Subsequent phases assume that For statements have been simplified to Loop.
The verification of the second phase, phase2, is almost as simple but a little
longer because phase2 invents variable names to hold temporary results.

The third phase compiles the resulting subset of the FOR language into a list
of instructions in the assembly-like target language. The crucial lemma, stated
below, was proved by induction using the theorem shown in Fig. 1. This lemma’s
statement can informally be read as: if the source semantics sem_t dictates that
program t successfully evaluates state s1 to state s2, the source program t is
within the allowed syntactic subset, and the compiled code for t is installed in
a store-related target state x ; then the target semantics sem_a evaluates x to a
new target state x 0 that is store-related to s2. Below, sem_a is the functional big-
step semantics for the target assembly language. The sem_a function executes
one instruction at a time and is tail-recursive; its lengthy definition is omitted.
phase3_subset defines the syntactic restrictions that programs must follow after
phases 1 and 2. The ellipses elide several detailed parts of the conclusion that
are only necessary to make the induction go through: in particular, where the
program counter will point at exit based on the result res.

` 8 s1 t res s2 x xs ys b.
(sem_t s1 t = (res,s2)) ^ phase3_subset t ^ (x.store = s1) ^
(x.pc = LENGTH xs) ^
(x.instrs = xs ++ phase3 (LENGTH xs) b t ++ ys) ^ res 6= Rfail ^
((res = Rbreak)) LENGTH (xs ++ phase3 (LENGTH xs) b t) b))
9 x 0. (sem_a x = sem_a x 0) ^ (x 0.store = s2) ^ . . .

From the lemma above, it is easy to prove that phase3 0 0 t preserves the
observable semantics, if t is in the subset expected by the third phase and t does
not Crash in the source semantics.

` 8 t.
semantics t 6= Crash ^ phase3_subset t)
(asm_semantics (phase3 0 0 t) = semantics t)

Here asm_semantics is the observable semantics of the target assembly language.

asm_semantics code =
if 9 c s. sem_a (a_state code c) = (Rval 0,s) then Terminate
else if 8 c. 9 s. sem_a (a_state code c) = (Rtimeout,s) then Diverge
else Crash

The following top-level compiler correctness theorem is produced by combin-
ing the semantics preservation theorems from all three phases. The assumption
that the source semantics does not Crash is implied by a simple syntactic check
syntax_ok, which checks that all variables been declared (Dec) and that all
Break statements are contained within For loops.

` 8 t. syntax_ok t) (asm_semantics (compile t) = semantics t)

Method: using functional big-step semantics it suffices to
prove theorems of the form:

evaluate	 code	 s1	 =	 (res,s2)	 ∧	 res	 ≠	 Rfail	 ∧	
state_rel	 s1	 t1	 ⇒	
∃t2.	 evaluate	 (compile	 code)	 t1	 =	 (res,t2)	 ∧	 	
	 	 	 	 	 state_rel	 s2	 t2	

Extra slides

Comparing functional with relation big-step

is not related to anything. To define divergence with a relation [18], one adds to
the existing inductive evaluation relation +t a co-inductively defined divergence
relation *t, which provides a useful co-induction principle.

The rules for Seq and For are given below. (S10) states that a sequence
diverges if its first sub-statement does. (S20) says that the sequence diverges if
the first sub-statement returns a value, using the +t relation, and the second
sub-statement diverges. Notice the duplication between the definitions of +t and
*t: both must allow the evaluation to progress normally up to a particular sub-
statement, and then +t requires it to terminate, while *t requires it to diverge.
This corresponds to the duplication internal to +t for propagating Rbreak and
other exceptional results.

(S10)
(t1,s) *t

(Seq t1 t2,s) *t

(S20)

(t1,s) +t (Rval n1,s1)
(t2,s1) *t

(Seq t1 t2,s) *t

(F10)

(e1,s) +e (Rval n1,s1)
n1 6= 0

(t,s1) *t

(For e1 e2 t,s) *t

(F20)

(e1, s) +e (Rval n1, s1)
n1 6= 0

(t, s1) +t (Rval n2, s2)
(e2, s2) +e (Rval n3, s3)

(For e1 e2 t,s3) *t

(For e1 e2 t, s) *t

2.3 Functional big-step semantics

The interpreter written in SML, given in §2.1, avoids the irritating duplication
of the conventional big-step semantics. It is also arguably easier to read and
clearly gives some semantics to all cases. So why can we not just take the SML
code and define it as a function in logic? The answer is that the SML code does
not terminate for all inputs, e.g., run_t [] (For (Num 1, Num 1, Exp (Num 1))).

In order to define run_t as a function in logic, we need to make it total
somehow. A technique for doing this is to add a clock to the function: on each
recursive call for which termination is non-obvious, one adds a clock decrement.
The clock is a natural number, so when it hits zero, execution is aborted with a
special time-out signal.

A very simple implementation of the clocked-function solution is to add a
check-and-decrement on every recursive call. The termination proof becomes
trivial, but the function is cluttered with the clock mechanism.

Instead of inserting the clock on every recursive call, we suggest that the clock
should only be decremented on recursive function calls for which the currently
evaluated expressions does not decrease in size. For the FOR language, this
means adding a clock-check-and-decrement only on the looping call in the For
case. In the SML code, this recursive call is performed here:

| run_t s (For (e1, e2, t)) =
...

(Rval _, s3) => run_t s3 (For (e1, e2, t))

These SML functions make use of catch-all patterns in case-expressions in order
to conveniently propagate non-Rval results. We use the same approach in our
functional semantics (§2.3) to keep them concise. The case expressions above are
idiomatic for SML, but in a language with syntactic support for monadic com-
putations, such as Haskell with do-notation, one would package the propagation
of exceptional results inside a monadic bind operator.

2.2 Relational big-step semantics

The definition above is a good way to describe the semantics of FOR to a pro-
grammer familiar with SML. It is, however, not directly usable as an operational
semantics for interactive proofs. Next, we outline how a big-step semantics can
be defined for the FOR language using conventional inductively defined relations.

Relational big-step semantics are built up from evaluation rules for an evalu-
ation relation, typically written +. Each rule states how execution of a program
expression evaluates to a result. The evaluation relation for the FOR language
takes as input a state and a statement; it then relates these inputs to the result
pair (r and new state) just as the interpreter above does.

We give a flavour of the evaluation rules next. The simplest rule in the FOR
language is evaluation of Break: evaluation always produces Rbreak and the
state s is returned unchanged. We call this rule (B).

(B)
(Break,s) +t (Rbreak,s)

The semantics of Seq is defined by two evaluation rules. We need two rules
because evaluation of t2 only happens if evaluation of t1 leads to Rval. The first
rule for Seq (S1) states: if t1 evaluates according to (t1,s) +t (Rval n1,s1) and
t2 evaluates as (t2,s1) +t r , then (Seq t1 t2,s) +t r , i.e. Seq t1 t2 evaluates
state s to result r . The second rule (S2) states that a non-Rval result in t1 is
the result for evaluation of Seq t1 t2.

(S1)

(t1,s) +t (Rval n1,s1)
(t2,s1) +t r

(Seq t1 t2,s) +t r
(S2)

(t1,s) +t (r,s1)
¬is_Rval r

(Seq t1 t2,s) +t (r,s1)

Defining these evaluation rules is straightforward, if the language is simple
enough. We include the For statement in our example language in order to show
how this conventional approach to big-step evaluation rules becomes awkward
and repetitive. The For statement’s semantics is defined by six rules. The first
rule captures the case when the loop is not executed, i.e. when the guard ex-
pression evaluates to zero. The second rule states that errors in the evaluation
of the guard are propagated.

(F1)
(e1,s) +e (Rval 0,s1)

(For e1 e2 t,s) +t (Rval 0,s1)
(F2)

(e1,s) +e (r,s1)
¬is_Rval r

(For e1 e2 t,s) +t (r,s1)

eval_t s (For e1 e2 t) =
...

(Rval _,s3))
if s3.clock 6= 0 then

eval_t (dec_clock s3) (For e1 e2 t)
else (Rtimeout,s3)

All other parts of the SML code are directly translated from SML into HOL4’s
logic. The complete definition of eval_t is given below. Because run_e is a
pure total function, it can be translated directly into the HOL4 logic as sem_e
without adding a clock. Here store_var x 0 s is state s updated to have value
0 in variable x .

eval_t s (Exp e) = eval_e s e
eval_t s (Dec x t) = eval_t (store_var x 0 s) t
eval_t s Break = (Rbreak,s)
eval_t s (Seq t1 t2) =
case eval_t s t1 of

(Rval _,s1)) eval_t s1 t2
| r) r
eval_t s (If e t1 t2) =
case eval_e s e of

(Rval n1,s1)) eval_t s1 (if n1 = 0 then t2 else t1)
| r) r
eval_t s (For e1 e2 t) =
case eval_e s e1 of

(Rval 0,s1)) (Rval 0,s1)
| (Rval _,s1))

(case eval_t s1 t of

(Rval _,s2))
(case eval_e s2 e2 of

(Rval _,s3))
if s3.clock 6= 0 then

eval_t (dec_clock s3) (For e1 e2 t)
else (Rtimeout,s3)

| r) r)
| (Rbreak,s2)) (Rval 0,s2)
| r) r)

| r) r

Note that, in our logic version of the semantics, we have introduced a new
kind of return value called Rtimeout. This return value is used only to signal
that the clock has aborted evaluation. It always propagates to the top, and can
be used for reasoning about divergence preservation (§3.3).

Termination proof We prove termination of eval_t by providing a well-founded
measure: the lexicographic ordering on the clock value and the size of the state-
ment that is being evaluated. This measure works because the value of the clock

In the functional version, Seq was specified by:

In the relational version, Seq is specified using four rules:

Induction from relational big-step

` (8 s e. P s (Exp e)) ^
(8 s x t. P (store_var x 0 s) t) P s (Dec x t)) ^
(8 s. P s Break) ^
(8 s t1 t2.

(8 v2 s1 v5.
(sem_t s t1 = (v2,s1)) ^ (v2 = Rval v5)) P s1 t2) ^

P s t1)
P s (Seq t1 t2)) ^

(8 s e t1 t2.
(8 v2 s1 n1.

(sem_e s e = (v2,s1)) ^ (v2 = Rval n1))
P s1 (if n1 = 0 then t2 else t1)))

P s (If e t1 t2)) ^
(8 s e1 e2 t.

(8 v2 s1 n1 v 0
2 s2 n 0

1 v 00
2 s3 n 00

1 .
(sem_e s e1 = (v2,s1)) ^ (v2 = Rval n1) ^ n1 6= 0 ^
(sem_t s1 t = (v 0

2,s2)) ^ (v 0
2 = Rval n 0

1) ^
(sem_e s2 e2 = (v 00

2 ,s3)) ^ (v 00
2 = Rval n 00

1) ^
s3.clock 6= 0)
P (dec_clock s3) (For e1 e2 t)) ^

(8 v2 s1 n1.
(sem_e s e1 = (v2,s1)) ^ (v2 = Rval n1) ^ n1 6= 0)
P s1 t))

P s (For e1 e2 t)))
8 v v1. P v v1

Fig. 1. Induction theorem for functional big-step semantics.

` . . . ^ . . . ^ . . . ^ . . . ^ . . . ^ . . . ^ . . . ^ . . . ^
(8 s s1 e1 e2 t.

(e1,s) +e (Rval 0,s1)) P (For e1 e2 t,s) (Rval 0,s1)) ^
(8 s s1 e1 e2 t r.

(e1,s) +e (r,s1) ^ ¬is_Rval r) P (For e1 e2 t,s) (r,s1)) ^
(8 s s1 s2 s3 e1 e2 t n1 n2 n3 r.

(e1,s) +e (Rval n1,s1) ^ n1 6= 0 ^ P (t,s1) (Rval n2,s2) ^
(e2,s2) +e (Rval n3,s3) ^ P (For e1 e2 t,s3) r)
P (For e1 e2 t,s) r) ^

(8 s s1 s2 e1 e2 t n1.
(e1,s) +e (Rval n1,s1) ^ n1 6= 0 ^ P (t,s1) (Rbreak,s2))
P (For e1 e2 t,s) (Rval 0,s2)) ^

(8 s s1 s2 s3 e1 e2 t n1 n2 r.
(e1,s) +e (Rval n1,s1) ^ n1 6= 0 ^ P (t,s1) (Rval n2,s2) ^
(e2,s2) +e (r,s3) ^ ¬is_Rval r)
P (For e1 e2 t,s) (r,s3)) ^

(8 s s1 s2 e1 e2 t n1 r.
(e1,s) +e (Rval n1,s1) ^ n1 6= 0 ^ P (t,s1) (r,s2) ^ ¬is_Rval r ^
r 6= Rbreak)
P (For e1 e2 t,s) (r,s2)))

8 ts rs. ts +t rs) P ts rs

Fig. 2. Induction theorem for relational big-step semantics. Parts omitted with ‘. . . ’.

It has one rule for each case in the relation

Six cases for For!

Observational semantics with I/O

sem_e s (Add e1 e2) =
(let ((fst_e,snd_e),nd_o,switch) = permute_pair s.non_det_o (e1,e2) in

case

sem_e
(s with
<|non_det_o := nd_o; io_trace := s.io_trace ++ [INR switch]|>)

fst_e
of

(Rval fst_n,s1))
(case sem_e s1 snd_e of

(Rval snd_n,s2))
(let (n1,n2) = unpermute_pair (fst_n,snd_n) switch in

(Rval (n1 + n2),s2))
| r) r)

| r) r)

The Add case is similar to before, but uses the permute_pair function to swap
the sub-expressions or not, depending on the oracle. It also returns a new oracle
ready to get the next choice, and whether or not it switched the sub-expressions.
The latter is used to un-permute the values to apply the primitive + in the right
order (which would matter for a non-commutative operator). Getchar similarly
consumes one input and updates the state. Putchar adds to the I/O trace.

Critically, the above modifications are orthogonal to the clock, and do not
a↵ect the termination proof, or the usefulness of the induction theorems and
rewriting equations. The changes to the semantics function are explained next.6

semantics t input (Terminate io_trace) ()
9 c nd i s.

(sem_t (init_st c nd input) t = (Rval i,s)) ^
(FILTER ISL s.io_trace = io_trace)

semantics t input Crash ()
9 c nd r s.

(sem_t (init_st c nd input) t = (r,s)) ^
((r = Rbreak) _ (r = Rfail))

semantics t input (Diverge io_trace) ()
9nd.

(8 c. 9 s. sem_t (init_st c nd input) t = (Rtimeout,s)) ^
(io_trace =W

c.
fromList
(FILTER ISL (SND (sem_t (init_st c nd input) t)).io_trace))

Firstly, semantics is now a predicate7 over programs, inputs, and observa-
tion. Termination and crashing are still straightforward: the non-determinism

6 Here FILTER is ordinary filtering over a list, and ISL is the predicate for the left
injection of a sum (disjoint union), so the FILTER ISL applications get the I/O
actions and discard the evaluation ordering choices.

7 Note that HOL4 identifies the types ↵ -> bool and ↵ set.

Defining the observational semantics when there is I/O.

