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Your program crashes.

Where do you look for the fault?

—» Do you look at your source code!?

—» Do look at the code for the compiler you used!?
A

( users want to rely on compilers )




Verified compilers

k What?

A verified compiler is a compiler that
comes with a machine-checker proof.The

proof states that the compiler preserves
the behaviour of source programs.

Traditional compiler development relies on testing.

Compiler verification is considered too costly.

(Jc\ost reduction? J




All (unverified) compilers have bugs

" Every compiler we tested was found to
crash and also to silently generate
wrong code when presented with valid input. ”

PLDI'11

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide  John Regehr

“ [The verified part of] CompCert is the only compiler
we have tested for which Csmith cannot find wrong-code

errors. This is not for lack of trying: we have devoted
about six CPU-years to the task.”
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Motivations

Bugs in compilers are not tolerated by users

Bugs can be hard to find by testing

Verified compilers must be used for verification
of source-level programs to imply guarantees at
the level of verified machine code

Research question: how easy (cheap) can we
make compiler verification?



State of the art



CompCert

CompCert C compiler

{ Coq )
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Leroy et al. Source: http://compcert.inria.fr/

Compiles C source code to assembly.
Has good performance numbers

Proved correct in Coq. http://compcert.inria.fr/



http://compcert.inria.fr/

CakeML compiler

Compiles CakeML concrete
syntax to machine code.

Proved correct in HOLA4.

Has mostly good performance
numbers (later lecture)

Known as the first verified compiler

to be bootstrapped.

I’'m one of the six developers behind
version 2 (diagram to the right).

abstract values incl. closures and ref pointers

| N~/

abstract values incl.
ref and code pointers

T

machine words and code labels

ARMv6 )

( later lecture zooms in

64-bit 32-bit
words words

https://cakeml.org/

Languages

source syntax

no modules

no cons names
no declarations

Compiler transformations

> Parse concrete syntax
Infer types, exit if fail

<
> Eliminate modules
<

Replace constructor
names with numbers

> Reduce declarations to
exps; introduce global vars

Make patterns exhaustive

exhaustive Move nullary constructor
pat. matches > patterns upwards
> Compile pattern matches

no pat. match

)

ClosLang:
last language
with closures
(has multi-arg

closures)

BVL:
functional
language
without
closures

only 1 global,
handle in call >

Datalang:
imperative

language

WordLang:
imperative
language with
machine words,
memory and
a GC primitive

~—————

StackLang:
imperative
language
with array-like
stack and
optional GC

LabLang:
assembly lang.

to nested Ifs and Lets
Rephrase language

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values
flow; annotate program

Introduce C-style fast
calls wherever possible

Remove deadcode
Prepare for closure conv.
Perform closure conv.

Inline small functions

\VAVAVAVAVAVILVAVAY

Fold constants and
shrink Lets

> Split over-sized functions
into many small functions

> Compile global vars into a
dynamically resized array

> Optimise Let-expressions
Switch to imperative style
> Reduce caller-saved vars

Combine adjacent
memory allocations

Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Remove deadcode
Allocate register names
Concretise stack

Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code
Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAV)

)
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All languages communicate with the external world
via a byte-array-based foreign-function interface.


https://cakeml.org/

[robust, inflexible more flexible,

v j A Spec-trum kbut can be fragile)
[ proved to always j \

work correctly ( produces a proof for each run )

V

Verified compilers Proof-producing compilers

Pilsner Fiat

Cogent
CompCert C compiler

Translation validation for

CakeML compiler a verified OS kernel

CompCertTSO



These 4 |lectures on

Verification of an ML compiler

will focus on key concepts rather
than iImplementation details

The lectures:

Lecture |:

Lecture 2:

Lecture 3:

Lecture 4:

introduction to compiler verification

data representation and garbage collection

closures and call optimisations

compiler bootstrapping



2 but feel free to ask )

The lectures will not cover:

Verification of parsing and ML-style type inference
Optimisations (except call optimisations in lecture 3)

Modelling and verification of I/O

How to manage a large code base of proofs

The lectures:

Lecture |: introduction to compiler verification
Lecture 2: data representation and garbage collection

Lecture 3: closures and call optimisations

Lecture 4: compiler bootstrapping



| et's get started!

Lecture |: introduction to compiler verification



Questions

Should we write a new compiler for the

verification!?
yes, because then it has
nice invariants

What should we prove about it?
that the generated programs behave
“the same” as the source programs

Do we need to use mechanised proof!

e )




Proving a compiler correct

Ingredients:

» a formal logic for the proofs
 accurate models of

* the source language - . N
* the target language — does thls corl.*espond
. : with reality?
* the compiler algorithm ; y
I\

Tools: [ . . j
* a proof assistant (software) requires testing
Method:

* prove simulation theorem using induction



Ingredient | Formal |OgiC



Formal logic

These lectures will use classical higher-order logic (HOL)

HOL = lambda calculus with simple ML-like types

Allows for quantification over functions and relations.

Example 1: Skolem
- (Vz. dy. Pz y) < df. Vz. P x (f x)
Example 2: complete induction over nat:

F (Vn. (Ym. m < n =P m) = P n) =Vn. Pn
Example 3: definition of list permutation:

= PERM [4 L2 <= Vaz. FILTER ((=) z) L3 = FILTER ((=) z) Lo



User-definitions in HOL

Datatypes:
datatype e = Var string datatype r = Rval int
Num int | Rbreak
Add e e | Rfail

Assign string e

Recursive functions (that terminate or are tail-recursive):

FILTER P []1 = []
FILTER P (h::t) = if P h then h::FILTER P t else FILTER P t

Inductive relations (also co-inductive relations):

(t1,s) I+ (Rval ni,s1) (t1,s) ¢ (r,s1)
(t2,51) Ye 7 —is_Rval r

S1 S2
(S1) (Seq t1 t2,8) Yo 1 (52) (Seq t1 t2,8) Yt (r,s1)




Ingredient 2: Language models



Syntax

The abstract syntax is defined as a datatype.

A toy source language:

t

Dec string t Ve .
EXp € —— _ evaluates an expression )
Break — e

Break aborts a loop
Seq t t N )
If et t
For e e T — { For-loop )
Var string <
Num int e>.<c||3resfsfions ca? plal\_/e
Add e e ~  side-effects (c.f. ML) ,

Assign string e



Syntax

The abstract syntax is defined as a datatype.

A toy source language: A toy target language:
t = Dec string t inst
Exp e = Add reg reg reg
Break Int reg int
Seqg t t Jmp offset
If et t JmpIf reg offset
For e e t
an assembly program is a )
e = Var string list of instructions
Num int ~
Add e e

Assign string e



Operational Semantics — the options

There are 4 main variants one can choose from.

used for

concurrenc I I .
g Y relatl.onal funcﬁloly common in ACL2 )

N
CakeML uses this style ,

avoids treating diverging

behaviours separately ,

most common 4 , , )
for compiler requires defining:
inductive rel. for terminating behaviours;
proofs 5

co-inductive rel. for diverging behaviours.

\_ J




Towards a functional big-step semantics (I)

We define an interpreter for the source in Standard ML:

fun

fun

lookup y [] = NONE
lookup y ((x,v)::xs) = if y = x then SOME v else lookup y xs

run_e s (Var x) = . . .
(case lookup x s of state is a simple assoc-list

NONE => (Rfail,s)
| SOME v => (Rval v,s))

run_e s (Num i) = (Rval i,s) )
run_e s (Assign (x, e)) = assignments update the state
(case run_e s e of \V/
(Rval n1, s1) => (Rval n1, (x,nl)::s1)
| T => r)

run_e s (Add (el, e2)) = ...

(/e\xpression evaluation returns Rval or Rfail and new state )




Towards a functional big-step semantics (2)

. and the evaluation of statements (type t):

fun run_t s (Exp e) = run_e s e
run_t s (Dec (x, t)) = run_t ((x,0):
S
S

run_t Break = (Rbreak, s)
(Seq (t1, t2)) = :| Break causes an Rbreak )

(case run_t s t1 of
(Rval _, s1) => run_t sl t2
| r => r)
| run_t s (If (e, t1, t2)) =
(case run_e s e of
(Rval nl1l, s1) => run_t s1 (if nl = 0 then t2 else tl1)
| r => r)

run_t

¢ Rbreak skips Seqg-code )




Towards a functional big-step semantics (3)

... so far everything we wrote in ML could be defined in HOL.

I . . )
... but now this recursive call
| run_t s (For (el, e2, t)) = introduces potential
(case run_e s el of non-termination
(Rval n1, s1) => - <

if nl1 = 0 then (Rval 0, sl1)||else
(case run_t sl t of
(Rval _, s2) =>

(case run_e s2 e2 of

(Rval _, s83) => run_t s3 (For (el, e2, t))

| r => r)
| (Rbreak, s2) => (Rval 0, s2)
| r => 1)

r => 1)



Why is non-terimination an issue!

Suppose HOL allowed definitions of
non-terminating functions, e.g.

fn=fn+ |

then fn-fn=fn+1|-fn

and 0=



Towards a functional big-step semantics (4)

We can force our functions to terminate by inserting a clock.

ML: | run_t s (For (el, e2, t)) =

~

HOIl: eval_t s (For e; ey t) = in HOL, the state is a record
. . containing a clock

J

(Rval _,s3) =
if s3s.clock # 0 then
eval_t (dec_clock”s3) (For e; es t)

else (Rt/%meout,s;g)

which gets decremented)

(if it hits zero, then we abort with an uncatchable exception)




Functional big-step semantics

Other parts do not require clock clutter:

HOL: eval_t s (Exp e) = eval_e s e€

eval_t s (Dec z t) = eval_t (st . . )
eval t s Break = (Rbreak,s) ... since the size of
eval_t s (Seq t1 t2) = the input shrinks

case eval_t s {1 of ,44;A‘

(Rval _,s1) = eval_t s1 t»
| r = r
eval_t s (If e t1 to) =
case eval_e s e of
(Rval n1,81) = eval_t s; (f n; = 0 then ¢ else t;)
| r = r




Observational semantics

Compiler proof is to relate different observational semantics.

Without I/O, programs can only Terminate, Diverge or Crash.

( terminates if there is a clock that is sufficient )

semantics ¢ = \/
if dc v s. sem_t (s_with_clock ¢) t = (Rval v,s) then Terminate

else if Vc. ds. sem_t (s_with_clock ¢) ¢t = (Rtimeout,s) then Diverge
else Crash A

!\ ( diverges if all clocks cause timeouts )

( crashes otherwise, e.g. when Rbreak propagates to the top )




Exercise

Define a functional big-step semantics in your
favourite prover (e.g. HOL4, Isabelle/HOL, Coqg, ACL2)

A

4 . . )
There is a trick to the

_ termination proof. Ask me! y




Ingredient 3: Compiler function



Ingredient 3: Compiler function

Three phases:
phase |: rewrite For to something simpler
phase 2: split expressions into instructions

phase 3: flatten to list of assembly instructions



Ingredient 3: Compiler function

Three phases:

phase |: rewrite For to something simpler

phasel (Exp e) = Exp e

phasel (Dec z t) = Seq (Exp (Assign z (Num 0))) (phasel t)
phasel Break = Break

phasel (Seq t1 t2) = Seq (phasel t;) (phasel t2)

phasel (For e; ex t) = Loop (If e; (Seq (phasel t) (Exp e2)) Break)

where Loop ¢ = For (Num 1) (Num 1) ¢

A
( Makes all loops simple while-true loops. )




Proving a compiler correct

Ingredients:

» a formal logic for the proofs
 accurate models of

* the source language
* the target language
* the compiler algorithm

Tools:
 a proof assistant (software)

Method:
* prove simulation theorem using induction




P, Induction theorem

(Vs e. P s (Exp e)) A
(Ws £ t. P (store_var £ 0 s) t = P s (Dec z t)) A
(Vs. P s Break) A

(VS tl t2.
(\V/’Ug S1 Us. [ \
(eval_t s = (13,51)) A (v» = Rvd Has structure of functional
P st = big-step interpreter.
P s (Seq t1 t2)) A N\ /
(Vs e t1 to.

4 )

(Vvy s1 n.
2 81 T One case for each program

(eval_e s e = (v2,51)) A (w2 = Rva

P s1 (f ny = 0 then &, else t;)) = construct.
Ps (If e t; £)) A - /
(Vs e e t.

(Vvge 81 M1 v3 So V7 Vs S3 Us.
(eval_e s e1 = (v4,81)) A (vg = Rval nm1) A n1 # 0 A
(eval_t s1 t = (v3,s2)) A (vs = Rval vy) A
(eval_e s2 e2 = (v2,s3)) A (v2 = Rval vs) A ss.clock # 0 =
P (dec_clock s3) (For e; ey t)) A

VNug 81 na.
(eval_e s e1 = (v4,51)) AN (vg = Rval my) A n1 # 0 =
P s t) =

P s (For e1 e2 t)) =

Vv 1n. P v n



Simulation proof

Particularly simple for phase I:

- Vs t. eval_t s (phasel t) = eval_t s ¢

Requires only 8 lines of HOL4 proof script (mostly rewriting).

We can lift this to the observational semantics
with a one-line proof by rewriting:

— Vi{. semantics (phasel t) = semantics ¢



Simulation theorems in general

Usually, each compile phase requires a theorem
of the form:

non-failing evaluation of source intermediate language (IL) )

evaluate code s1 = (res,s2) A res # Rfail A
state_rel s1 t1 = implies )

Jt2.

e —

evaluate (compile code) t1 = (res,t2) A

#Fate_rel s2 t2
|

< similar evaluation in target IL )

( ... W.r.t. some relation between states (state_rel) )




Simulation theorems in general

Usually, each compile phase requires a theorem
of the form:

evaluate code s1 = (res,s2) A res # Rfail A
state rel s1 t1 =

3t2. evaluate (compile code) t1 = (res,t2) A
state _rel s2 t2

E usually: state rel keeps clocks in sync >

variant: target can consume more clock ticks >




Simulation theorems in general

Usually, each compile phase requires a theorem
of the form:

evaluate code s1 = (res,s2) A res # Rfail A
state rel s1 t1 =

3t2. evaluate (compile code) t1 = (res,t2) A
state _rel s2 t2

Sufficient to prove observational equivalence for
both terminating and diverging runs.



Phase 2 simulation theorem

— restrict language syntax
i source IL ) ( not failing ) [ foIIowinz pﬁaseyl j
F Vs e

n res Si. \ \V
(eval_t s e = (res,s1)) A res #* Rfail A phase2_subset e A

possible \ § . tore L {.store A
(t.cloc target IL ) A compiler )trlen n =

SR a\state relation )
(eval_t t (flatten_t e n) = (res,t;)) A

s1.store L t;.store A (t1.clock = si.clock) /\V
possible_var_name n S;.store A

Vi v.

possible_var_name k s.store A t_max e < strlen £ A
strlen £k < strlen n A (lookup f{.store k = SOME v) =

(lookup t;.store k£ = SOME v)
{\extra property )




Composing top-level theorems

Each phase maintains observational equivalence:

semantics (phasel {) = semantics ?

semantics t # Crash A phase2_subset ¢t =
(semantics (phase2 t) = semantics t?)

semantics t # Crash A phase3_subset ¢t =
(asm_semantics (phase3 0 0 t) = semantics t)

A

C observational semantics of target assembly )

Here: compile ¢ = phase3 0 0 (phase2 (phasel t))



Composing top-level theorems

lemma: correct syntax implies no Crashes )

Result: C for ML: type-correct program implies no Crash )

- Vi. syntax_ok t = (asm_semantics (compile t) = semantics ¢?)

where compile ¢t = phase3 0 0 (phase2 (phasel t))



What we learnt

Ingredients: formal logic, compiler; language semantics

Tools: proof assistant

Method: using functional big-step semantics it suffices to
prove theorems of the form:

evaluate code sl1 = (res,s2) A res # Rfail A
state rel s1 t1 =

3t2. evaluate (compile code) t1 = (res,t2) A
state _rel s2 t2

in order to prove observational equivalence,i.e.

- Vi. syntax_ok t = (asm_semantics (compile t) = semantics t)



Extra slides



Comparing functional with relation big-step

In the functional version, Seq was specified by:

eval_t s (Seq t1 t2) =
case eval_t s t; of

(Rval _,s1) = eval_t s; to
| r = r

In the relational version, Seq is specified using four rules:

(t1,8) Yt (Rval ni,s1) (t1,8) Yt (r,s1)
(t2,s1) e 7 —is_Rval r
S1 S2
(51) (Seq t1 t2,8) ¢ 1 (52) (Seq t1 t2,8) Yt (7,81)
(t1,s) Y+ (Rval ni,s1)
(t1,8) (t2, 1)
(Sl/) 1 M+ (82/) 2,51) Tt

(Seq t1 t2,8) (Seq &1 t2,5)



Induction from relational big-step

A N A N A N A A A N A YA\
(\V/S S1 €1 €2 t.
(e1,8) e (Rval 0,s1) = P (For e; e t,s) (Rval 0,s1)) A
(Vs s1 e1 ea t r.
(e1,8) e (r,s1) N —is_Rval r = P (For e; ex t,s) (r,s1)) A
(Vs 81 89 83 €1 ea t n1 mo ng r.
(e1,8) {e (Rval ni,s1) A n1 # 0 A P (t,s1) (Rval ng,s2) A
(e2,s52) e (Rval nsg,s3) N P (For e e t,s3) r =
P (For e es t,s) r) A
(Vs s1 s2 e1 e t ny.
(e1,8) e (Rval ni,s1) A n1 # 0 A P (¢,s1) (Rbreak,ss) =
P (For e; ey t,s) (Rval 0,s)) A
(Vs s1 s2 s3 e1 e2 t n1 no r.
(e1,8) o (Rval ni1,s1) A np # 0 A P (t,s1) (Rval ng,s2) A

(e2,52) e (r,s3) A —is 1l r —
P (For e1 ez t,s) (r,ss It has one rule for each case in the relation )
(Vs s1 S92 e1 ea t n1 r.
(e1,s) e (Rval m1,s1) A n1 # 0 A P (t,s1) (r,s) A : |
" + Rbreak — Six cases for For!
P (For e ey t,s) (r,s3)) =
Vis rs. ts ¢t s = P ts rs




Observational semantics with I/O

Defining the observational semantics when there is |/O.

semantics t wnput (Terminate io0_trace) <—

dc nd 1 s.
(sem_t (init_st ¢ nd input) t = (Rval i,s)) A
(FILTER ISL s.io_trace = to_trace)

semantics ¢ wnput Crash <=

dc nd r s.
(sem_t (init_st ¢ nd wnmput) t = (r,s)) A
((r = Rbreak) V (r = Rfail))

semantics t input (Diverge io_trace) <=

dnd.
(We. ds. sem_t (init_st ¢ nd wnput) t = (Rtimeout,s)) A
(t0_trace =

\V c.

fromList
(FILTER ISL (SND (sem_t (init_st ¢ nd wnput) t)).io_trace))



